-
2
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
3
-
-
84894251509
-
4: sonochemical synthesis, characterization and improved visible light photocatalytic properties
-
4: sonochemical synthesis, characterization and improved visible light photocatalytic properties. RSC Adv 4:10097–10107. doi:10.1039/C3RA44488K
-
(2014)
RSC Adv
, vol.4
, pp. 10097-10107
-
-
Fulekar, M.H.1
Singh, A.2
Dutta, D.P.3
Roy, M.4
Ballald, A.5
Tyagic, A.K.6
-
4
-
-
84886702289
-
4–rGO with low OH-related defects
-
4–rGO with low OH-related defects. Nanoscale 5:11248–11256. doi:10.1039/C3NR03370H
-
(2013)
Nanoscale
, vol.5
, pp. 11248-11256
-
-
Gao, E.1
Wang, W.Z.2
-
5
-
-
33847690144
-
The rise of graphene
-
Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849
-
(2007)
Nat Mater
, vol.6
, pp. 183-191
-
-
Geim, A.K.1
Novoselov, K.S.2
-
6
-
-
79951895444
-
Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications
-
Guo SJ, Dong SJ (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672. doi:10.1039/C0CS00079E
-
(2011)
Chem Soc Rev
, vol.40
, pp. 2644-2672
-
-
Guo, S.J.1
Dong, S.J.2
-
7
-
-
0039129509
-
Environmental applications of semiconductor photocatalysis
-
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004
-
(1995)
Chem Rev
, vol.95
, pp. 69-96
-
-
Hoffmann, M.R.1
Martin, S.T.2
Choi, W.Y.3
Bahnemann, D.W.4
-
8
-
-
80052027396
-
2 hierarchical heterostructure: synthesis and enhanced visible-light photocatalytic activities
-
2 hierarchical heterostructure: synthesis and enhanced visible-light photocatalytic activities. J Hazard Mater 192:1772–1779. doi:10.1016/j.jhazmat.2011.07.013
-
(2011)
J Hazard Mater
, vol.192
, pp. 1772-1779
-
-
Hou, J.1
Wang, Z.2
Jiao, S.3
Zhu, H.4
-
9
-
-
46449100294
-
Graphene-based materials
-
Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171. doi:10.1126/science.1158180
-
(2008)
Science
, vol.320
, pp. 1170-1171
-
-
Li, D.1
Kaner, R.B.2
-
12
-
-
84899072890
-
4 microribbons by sol–gel combined with electrospinning process and photocatalytic degradation performances
-
4 microribbons by sol–gel combined with electrospinning process and photocatalytic degradation performances. J Sol–Gel Sci Technol 70:24–32. doi:10.1007/s10971-014-3269-9
-
(2014)
J Sol–Gel Sci Technol
, vol.70
, pp. 24-32
-
-
Liu, G.S.1
Liu, S.W.2
Lu, Q.F.3
Sun, H.Y.4
Xu, F.X.5
Zhao, G.6
-
14
-
-
49649118986
-
Electronic band structures and photochemical properties of La–Ga-based oxysulfides
-
Ogisu K, Ishikawa A, Shimodaira Y, Takata T, Kobayashi H, Domen K (2008) Electronic band structures and photochemical properties of La–Ga-based oxysulfides. J Phys Chem C 112:11978–11984. doi:10.1021/jp802153t
-
(2008)
J Phys Chem C
, vol.112
, pp. 11978-11984
-
-
Ogisu, K.1
Ishikawa, A.2
Shimodaira, Y.3
Takata, T.4
Kobayashi, H.5
Domen, K.6
-
15
-
-
79952596001
-
4 nanocrystals for enhanced photocatalytic performance
-
4 nanocrystals for enhanced photocatalytic performance. J Mater Chem 21:4235–4241. doi:10.1039/C0JM03655B
-
(2011)
J Mater Chem
, vol.21
, pp. 4235-4241
-
-
Pan, C.S.1
Zhu, Y.F.2
-
17
-
-
80052580714
-
4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation
-
4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C 115:17870–17879. doi:10.1021/jp204492r
-
(2011)
J Phys Chem C
, vol.115
, pp. 17870-17879
-
-
Park, H.S.1
Kweon, K.E.2
Ye, H.3
Paek, E.4
Hwang, G.S.5
Bard, A.J.6
-
19
-
-
49249116296
-
Visible-light-induced photocatalyst based on nickel titanate nanoparticles
-
Shu X, He J, Chen D (2008) Visible-light-induced photocatalyst based on nickel titanate nanoparticles. Ind Eng Chem Res 47:4750–4753. doi:10.1021/ie071619d
-
(2008)
Ind Eng Chem Res
, vol.47
, pp. 4750-4753
-
-
Shu, X.1
He, J.2
Chen, D.3
-
22
-
-
38749112127
-
Transparent, conductive graphene electrodes for dye-sensitized solar cells
-
Wang X, Zhi LJ, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327. doi:10.1021/nl072838r
-
(2008)
Nano Lett
, vol.8
, pp. 323-327
-
-
Wang, X.1
Zhi, L.J.2
Müllen, K.3
-
23
-
-
67349249909
-
4 nano-cocoons and nanorods with different phases
-
4 nano-cocoons and nanorods with different phases. J Solid State Chem 182:1396–1400. doi:10.1016/j.jssc.2009.02.031
-
(2009)
J Solid State Chem
, vol.182
, pp. 1396-1400
-
-
Xue, F.1
Li, H.B.2
Zhu, Y.C.3
Xiong, S.L.4
Zhang, X.W.5
Wang, T.T.6
Liang, X.7
Qian, Y.T.8
-
26
-
-
75749138138
-
P25–graphene composite as a high performance photocatalyst
-
Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25–graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. doi:10.1021/nn901221k
-
(2010)
ACS Nano
, vol.4
, pp. 380-386
-
-
Zhang, H.1
Lv, X.J.2
Li, Y.M.3
Wang, Y.4
Li, J.H.5
-
27
-
-
84872544378
-
4 a better luminescent host? Case study on doping and annealing effects
-
4 a better luminescent host? Case study on doping and annealing effects. Inorg Chem 52:807–815. doi:10.1021/ic3019315
-
(2013)
Inorg Chem
, vol.52
, pp. 807-815
-
-
Zhao, M.1
Li, L.2
Zheng, J.3
Yang, L.4
Li, G.5
|