메뉴 건너뛰기




Volumn 28, Issue , 2015, Pages 217-225

Multiobjective PSO based adaption of neural network topology for pixel classification in satellite imagery

Author keywords

Land cover classification; Multiobjective optimization (MOO); Neural network; Particle swarm optimization; Remote sensing imagery

Indexed keywords

ELECTRIC NETWORK TOPOLOGY; IMAGE CLASSIFICATION; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); PIXELS; REMOTE SENSING; SATELLITE IMAGERY; TOPOLOGY;

EID: 84919782701     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.11.052     Document Type: Article
Times cited : (34)

References (37)
  • 4
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • J.A. Benediktsson, P.H. Swain, and O.K. Erosy Neural network approaches versus statistical methods in classification of multisource remote sensing data IEEE Trans. Goes. Remote Sense. 28 1990 540 552
    • (1990) IEEE Trans. Goes. Remote Sense. , vol.28 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Erosy, O.K.3
  • 5
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • G.M. Foody, and M.K. Arora An evaluation of some factors affecting the accuracy of classification by an artificial neural network Int. J. Remote Sense. 18 4 1997 799 810
    • (1997) Int. J. Remote Sense. , vol.18 , Issue.4 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 6
    • 24944471724 scopus 로고    scopus 로고
    • A statistical self-organizing learning system for remote sensing classification
    • H.M. Chee, and O.K. Ersoy A statistical self-organizing learning system for remote sensing classification IEEE Trans. Goes. Remote Sense. 432 8 2005 1890 1900
    • (2005) IEEE Trans. Goes. Remote Sense. , vol.432 , Issue.8 , pp. 1890-1900
    • Chee, H.M.1    Ersoy, O.K.2
  • 7
    • 0442311261 scopus 로고    scopus 로고
    • Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework
    • M. Acharyya, R.K. De, and M.K. Kundu Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework IEEE Trans. Goes. Remote Sense. 41 12 2003 2900 2905
    • (2003) IEEE Trans. Goes. Remote Sense. , vol.41 , Issue.12 , pp. 2900-2905
    • Acharyya, M.1    De, R.K.2    Kundu, M.K.3
  • 8
    • 0032029672 scopus 로고    scopus 로고
    • Fuzzy ARTMAP supervised classification of multispectral remotely sensed images
    • B. Mannan Joy, and A.K. Ray Fuzzy ARTMAP supervised classification of multispectral remotely sensed images Int. J. Remote Sense. 19 4 1998 767 774
    • (1998) Int. J. Remote Sense. , vol.19 , Issue.4 , pp. 767-774
    • Mannan Joy, B.1    Ray, A.K.2
  • 9
    • 33746924070 scopus 로고    scopus 로고
    • Comparison of computational intelligence based classification techniques for remotely sensed optical image classification
    • D. Stathakis, and A. Vasilakos Comparison of computational intelligence based classification techniques for remotely sensed optical image classification IEEE Trans. Goes. Remote Sense. 44 8 2006 2305 2318
    • (2006) IEEE Trans. Goes. Remote Sense. , vol.44 , Issue.8 , pp. 2305-2318
    • Stathakis, D.1    Vasilakos, A.2
  • 10
    • 44649165024 scopus 로고    scopus 로고
    • Statistical pattern recognition in remote sensing
    • C.H. Chen, and P.G. Peter Ho Statistical pattern recognition in remote sensing Pattern Recognise. 41 9 2008 2731 2741
    • (2008) Pattern Recognise. , vol.41 , Issue.9 , pp. 2731-2741
    • Chen, C.H.1    Peter Ho, P.G.2
  • 11
    • 36349029276 scopus 로고    scopus 로고
    • Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images
    • N.G. Kasapoglu, and O.K. Ersoy Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images IEEE Trans. Goes. Remote Sense. 45 12 2007 3880 3893
    • (2007) IEEE Trans. Goes. Remote Sense. , vol.45 , Issue.12 , pp. 3880-3893
    • Kasapoglu, N.G.1    Ersoy, O.K.2
  • 12
    • 0031142019 scopus 로고    scopus 로고
    • Training strategies for neural network soft classification of remotely sensed imagery
    • A.C. Bernard, G.G. Wilkinson, and I. Kanellopoulos Training strategies for neural network soft classification of remotely sensed imagery Int. J. Remote Sense. 18 8 1997 1851 1856
    • (1997) Int. J. Remote Sense. , vol.18 , Issue.8 , pp. 1851-1856
    • Bernard, A.C.1    Wilkinson, G.G.2    Kanellopoulos, I.3
  • 13
    • 34249812717 scopus 로고    scopus 로고
    • Wavelet-feature-based classifiers for multispectral remote-sensing images
    • S.K. Meher, B. Uma Shankar, and A. Ghosh Wavelet-feature-based classifiers for multispectral remote-sensing images IEEE Trans. Goes. Remote Sense. 45 6 2007 1881 1890
    • (2007) IEEE Trans. Goes. Remote Sense. , vol.45 , Issue.6 , pp. 1881-1890
    • Meher, S.K.1    Uma Shankar, B.2    Ghosh, A.3
  • 14
    • 67649398795 scopus 로고    scopus 로고
    • On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images
    • J. Plaza, A. Plaza, R. Perez, and P. Martinez On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images Pattern Recognise. 42 2009 3032 3045
    • (2009) Pattern Recognise. , vol.42 , pp. 3032-3045
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 15
    • 80053572788 scopus 로고    scopus 로고
    • Supervised and unsupervised land use map generation from remotely sensed images using ant based systems
    • A. Haldera, A. Ghosha, and S. Ghoshb Supervised and unsupervised land use map generation from remotely sensed images using ant based systems Apple. Soft Compute. 11 2011 5770 5781
    • (2011) Apple. Soft Compute. , vol.11 , pp. 5770-5781
    • Haldera, A.1    Ghosha, A.2    Ghoshb, S.3
  • 16
    • 0042593043 scopus 로고    scopus 로고
    • Gaussian synapse ANNs in multi- and hyperspectral image data analysis
    • J.L. Crespo, R.J. Duro, and F. Lopez Gaussian synapse ANNs in multi- and hyperspectral image data analysis IEEE Trans. In strum. Meas. 52 3 2003 724 732
    • (2003) IEEE Trans. in Strum. Meas. , vol.52 , Issue.3 , pp. 724-732
    • Crespo, J.L.1    Duro, R.J.2    Lopez, F.3
  • 17
    • 33747136186 scopus 로고    scopus 로고
    • Artificial neural networks for mapping regional-scale upland vegetation from high spatial resolution imagery
    • H. Mills, M.E.J. Cutler, and D. Fairbairn Artificial neural networks for mapping regional-scale upland vegetation from high spatial resolution imagery Int. J. Remote Sense. 27 11 2006 2177 2195
    • (2006) Int. J. Remote Sense. , vol.27 , Issue.11 , pp. 2177-2195
    • Mills, H.1    Cutler, M.E.J.2    Fairbairn, D.3
  • 18
    • 15344342907 scopus 로고    scopus 로고
    • Pareto evolutionary neural networks
    • J.E. Fieldsend, and S. Singh Pareto evolutionary neural networks IEEE Trans. Neural Newt. 16 2 2005 338 354
    • (2005) IEEE Trans. Neural Newt. , vol.16 , Issue.2 , pp. 338-354
    • Fieldsend, J.E.1    Singh, S.2
  • 19
    • 32544440460 scopus 로고    scopus 로고
    • Applications of multi-objective structure optimization
    • A. Gepperth, and S. Roth Applications of multi-objective structure optimization Neurocomputing 69 2006 701 713
    • (2006) Neurocomputing , vol.69 , pp. 701-713
    • Gepperth, A.1    Roth, S.2
  • 20
    • 78650178182 scopus 로고    scopus 로고
    • Generation and simplification of artificial neural networks by means of genetic programming
    • D. Rivero, J. Dorado, J. Rabunal, and A. Pazos Generation and simplification of artificial neural networks by means of genetic programming Neurocomputing 73 2010 3200 3223
    • (2010) Neurocomputing , vol.73 , pp. 3200-3223
    • Rivero, D.1    Dorado, J.2    Rabunal, J.3    Pazos, A.4
  • 21
    • 71749096569 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks by multidimensional particle swarm optimization
    • S. Kiranyaz, T. Ince, A. Yildirim, and M. Gabbouj Evolutionary artificial neural networks by multidimensional particle swarm optimization Neural Newt. 22 10 2009 1448 1462
    • (2009) Neural Newt. , vol.22 , Issue.10 , pp. 1448-1462
    • Kiranyaz, S.1    Ince, T.2    Yildirim, A.3    Gabbouj, M.4
  • 24
    • 84942134374 scopus 로고    scopus 로고
    • Comparison of particle Swarm optimization and backpropagation as training algorithms for neural networks
    • V.G. Gudise, and G.K. Venayagamoorthy Comparison of particle Swarm optimization and backpropagation as training algorithms for neural networks Proc. IEEE Swarm Intelligence Symposium 2003 110 117
    • (2003) Proc. IEEE Swarm Intelligence Symposium , pp. 110-117
    • Gudise, V.G.1    Venayagamoorthy, G.K.2
  • 25
    • 33750328484 scopus 로고    scopus 로고
    • Application of an improved particle swarm optimization algorithm for neural network training
    • 13-15 October, Beijing, China
    • F. Zaho, Z. Ren, D. Yu, and Y. Yang Application of an improved particle swarm optimization algorithm for neural network training International Conference on Neural Networks and Brain (ICNN&B05), vol. 3 13-15 October, Beijing, China 2005 1639 1698
    • (2005) International Conference on Neural Networks and Brain (ICNN&B05), Vol. 3 , pp. 1639-1698
    • Zaho, F.1    Ren, Z.2    Yu, D.3    Yang, Y.4
  • 28
    • 84855977752 scopus 로고    scopus 로고
    • Multi-objective hybrid evolutionary algorithms for radial basis function neural network design
    • S.N. Qasem, S.M. Shamsuddin, and Zain A. Mohd Multi-objective hybrid evolutionary algorithms for radial basis function neural network design Knowl.-Based Syst. 27 2012 2010 475 497
    • (2010) Knowl.-Based Syst. , vol.27 , Issue.2012 , pp. 475-497
    • Qasem, S.N.1    Shamsuddin, S.M.2    Mohd, Z.A.3
  • 29
    • 77949266538 scopus 로고    scopus 로고
    • A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks
    • L.M. Almeida, and T.B. Ludermir A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks Neurocomputing 73 2010 1438 1450
    • (2010) Neurocomputing , vol.73 , pp. 1438-1450
    • Almeida, L.M.1    Ludermir, T.B.2
  • 30
    • 34249816831 scopus 로고    scopus 로고
    • Semisupervised PSO-SVM regression for biophysical parameter estimation
    • Y. Bazi, and F. Melgani Semisupervised PSO-SVM regression for biophysical parameter estimation IEEE Trans. Goes. Remote Sense. 45 6 2007 1887 1895
    • (2007) IEEE Trans. Goes. Remote Sense. , vol.45 , Issue.6 , pp. 1887-1895
    • Bazi, Y.1    Melgani, F.2
  • 31
    • 34247466658 scopus 로고    scopus 로고
    • Multiobjective genetic clustering for pixel classification in remotely sensing imagery
    • S. Bandyopadhya, U. Maulik, and A. Mukhopadhyay Multiobjective genetic clustering for pixel classification in remotely sensing imagery IEEE Trans. Goes. Remote Sense. 45 5 2007 1506 1511
    • (2007) IEEE Trans. Goes. Remote Sense. , vol.45 , Issue.5 , pp. 1506-1511
    • Bandyopadhya, S.1    Maulik, U.2    Mukhopadhyay, A.3
  • 32
    • 70549090027 scopus 로고    scopus 로고
    • Clustering of hyperspectral images based on multiobjective particle swarm optimization
    • A. Paoli, F. Melgani, and E. Pasolli Clustering of hyperspectral images based on multiobjective particle swarm optimization IEEE Trans. Goes. Remote Sense. 47 12 2009 4175 4188
    • (2009) IEEE Trans. Goes. Remote Sense. , vol.47 , Issue.12 , pp. 4175-4188
    • Paoli, A.1    Melgani, F.2    Pasolli, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.