메뉴 건너뛰기




Volumn 41, Issue 2, 2014, Pages 449-465

Spatial–temporal compression and recovery in a wireless sensor network in an underground tunnel environment

Author keywords

Spatial temporal compression; Structural health monitoring; Wireless sensor network

Indexed keywords

BIG DATA; COMPUTER SYSTEM RECOVERY; RECOVERY; SENSOR NODES; STRUCTURAL HEALTH MONITORING; TUNNELS; WIRELESS SENSOR NETWORKS;

EID: 84919492701     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-014-0772-9     Document Type: Article
Times cited : (26)

References (31)
  • 1
    • 84857369975 scopus 로고    scopus 로고
    • Lagrangian heuristic method for the wireless sensor network design problem in railway structural health monitoring
    • Hada A, Soga K, Liu R, Wassell I (2012) Lagrangian heuristic method for the wireless sensor network design problem in railway structural health monitoring. Mech Syst Signal Process 28:20–35
    • (2012) Mech Syst Signal Process , vol.28 , pp. 20-35
    • Hada, A.1    Soga, K.2    Liu, R.3    Wassell, I.4
  • 2
    • 77954589388 scopus 로고    scopus 로고
    • An experimental model of relay development planning tool for wireless sensor network system to monitor civil engineering structure
    • Innsbruck, Austria:
    • Hirai C, Soga K (2010) An experimental model of relay development planning tool for wireless sensor network system to monitor civil engineering structure. In: Proceeding of the 19th LASTED international conference parallel and distributed computing and network (PDCN 2010), Innsbruck, Austria, pp 164–171
    • (2010) Proceeding of the 19th LASTED international conference parallel and distributed computing and network (PDCN , vol.2010 , pp. 164-171
    • Hirai, C.1    Soga, K.2
  • 3
    • 77955672009 scopus 로고    scopus 로고
    • Smart bridges, Smart tunnels: transforming wireless sensor networks from research prototypes into robust engineering Infrastructure
    • Stajano F, Hoult N, Wassell I, Bennett P, Middleton C, Soga K (2010) Smart bridges, Smart tunnels: transforming wireless sensor networks from research prototypes into robust engineering Infrastructure. Ad Hoc Netw 8(8):872–888
    • (2010) Ad Hoc Netw , vol.8 , Issue.8 , pp. 872-888
    • Stajano, F.1    Hoult, N.2    Wassell, I.3    Bennett, P.4    Middleton, C.5    Soga, K.6
  • 4
    • 80051473929 scopus 로고    scopus 로고
    • A synchronized wireless sensor network for experimental modal analysis in structural health monitoring
    • Bocca M, Eriksson L, Mahmood A, Jantti R, Kullaa J (2011) A synchronized wireless sensor network for experimental modal analysis in structural health monitoring. Comput-Aided Civil Infrastruct Eng 26(7):483–499
    • (2011) Comput-Aided Civil Infrastruct Eng , vol.26 , Issue.7 , pp. 483-499
    • Bocca, M.1    Eriksson, L.2    Mahmood, A.3    Jantti, R.4    Kullaa, J.5
  • 5
    • 0042849259 scopus 로고    scopus 로고
    • Structural health monitoring using modular wireless sensors
    • Tanner N, Wait J, Farrar C, Sohn H (2003) Structural health monitoring using modular wireless sensors. Intell Mater Syst Struct 14(1):43–56
    • (2003) Intell Mater Syst Struct , vol.14 , Issue.1 , pp. 43-56
    • Tanner, N.1    Wait, J.2    Farrar, C.3    Sohn, H.4
  • 6
    • 33751378730 scopus 로고    scopus 로고
    • A summary review of wireless sensors and sensor networks for structural health monitoring
    • Lynch JP, Loh KJ (2006) A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib Digest 38(2):91–128
    • (2006) Shock Vib Digest , vol.38 , Issue.2 , pp. 91-128
    • Lynch, J.P.1    Loh, K.J.2
  • 7
    • 29844447625 scopus 로고    scopus 로고
    • Spatial-temporal sampling rates and energy efficient in wireless sensor networks
    • Bandyopadhyay S, Tian Q, Coyle E (2005) Spatial-temporal sampling rates and energy efficient in wireless sensor networks. IEEE/ACM Trans Netw 13(6):1339–1352
    • (2005) IEEE/ACM Trans Netw , vol.13 , Issue.6 , pp. 1339-1352
    • Bandyopadhyay, S.1    Tian, Q.2    Coyle, E.3
  • 10
    • 46449122114 scopus 로고    scopus 로고
    • Wireless sensor network survey
    • Yick J, Muckherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330
    • (2008) Comput Netw , vol.52 , Issue.12 , pp. 2292-2330
    • Yick, J.1    Muckherjee, B.2    Ghosal, D.3
  • 11
    • 34547441351 scopus 로고    scopus 로고
    • Data compression algorithms for energy-constrained devices in delay tolerant networks. In: Proceedings of the 4th international conference on embeded networked sensor systems
    • Sadler C, Martonosi M (2006) Data compression algorithms for energy-constrained devices in delay tolerant networks. In: Proceedings of the 4th international conference on embeded networked sensor systems. SenSys
    • (2006) SenSys
    • Sadler, C.1    Martonosi, M.2
  • 12
    • 34247335080 scopus 로고    scopus 로고
    • Energy-efficient data representation and routing for wireless sensor networks based on a distributed wavelet compression algorithm. In: Proceedings of the fifth international conference on information processing in sensor networks
    • Ciancio A, Pattem S, Ortega, A, Krishnamachari B (2006) Energy-efficient data representation and routing for wireless sensor networks based on a distributed wavelet compression algorithm. In: Proceedings of the fifth international conference on information processing in sensor networks, pp 309–316
    • (2006)
    • Ciancio, A.1    Pattem, S.2    Ortega, A.3    Krishnamachari, B.4
  • 13
    • 34247882635 scopus 로고    scopus 로고
    • Rate-constrained distributed estimation in wireless sensor network
    • Li JL, Alregib G (2007) Rate-constrained distributed estimation in wireless sensor network. IEEE Trans Signal Process 55(5):1634–1643
    • (2007) IEEE Trans Signal Process , vol.55 , Issue.5 , pp. 1634-1643
    • Li, J.L.1    Alregib, G.2
  • 14
    • 77649185150 scopus 로고    scopus 로고
    • Enabling energy-efficient and lossy aware data compression in wireless sensor networks by multi-objective evolutionary optimization
    • Marcelloni F, Vecchio M (2010) Enabling energy-efficient and lossy aware data compression in wireless sensor networks by multi-objective evolutionary optimization. Inf Sci 180(10):1924–1941
    • (2010) Inf Sci , vol.180 , Issue.10 , pp. 1924-1941
    • Marcelloni, F.1    Vecchio, M.2
  • 15
    • 33645712892 scopus 로고    scopus 로고
    • Compressive sensing
    • Donoho DL (2006) Compressive sensing. IEEE Trans Inf Theory 52(4):1289–1306
    • (2006) IEEE Trans Inf Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 16
  • 17
    • 70450284408 scopus 로고    scopus 로고
    • Compressive data gathering for large-scale wireless sensor networks. In: Proceedings of the 15th annual international conference on mobile computing and networking
    • Luo C, Sun J, Wu F, Chen CW (2009) Compressive data gathering for large-scale wireless sensor networks. In: Proceedings of the 15th annual international conference on mobile computing and networking, pp 145–156
    • (2009)
    • Luo, C.1    Sun, J.2    Wu, F.3    Chen, C.W.4
  • 18
    • 2342556586 scopus 로고    scopus 로고
    • Spatial-temporal correlation: theory and applications for wireless sensor networks
    • Vuran MC, Akan OB, Akyildiz IF (2004) Spatial-temporal correlation: theory and applications for wireless sensor networks. Comput Netw J 45(3):245–259
    • (2004) Comput Netw J , vol.45 , Issue.3 , pp. 245-259
    • Vuran, M.C.1    Akan, O.B.2    Akyildiz, I.F.3
  • 20
    • 84899425513 scopus 로고    scopus 로고
    • Big data reduction and optimization in sensor monitoring network, J Appl Math:
    • He B, Li YG (2014) Big data reduction and optimization in sensor monitoring network. J Appl Math. doi:10.1155/2014/294591
    • (2014) Li YG
    • He, B.1
  • 21
    • 42549104040 scopus 로고    scopus 로고
    • Avoiding energy holes in wireless sensor networks with nonuniform node distribution
    • Wu XB, Chen GH, Das SK (2008) Avoiding energy holes in wireless sensor networks with nonuniform node distribution. IEEE Trans Parallel Distrib Syst 19(5):710–720
    • (2008) IEEE Trans Parallel Distrib Syst , vol.19 , Issue.5 , pp. 710-720
    • Wu, X.B.1    Chen, G.H.2    Das, S.K.3
  • 22
    • 34047156164 scopus 로고    scopus 로고
    • Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In: 25th IEEE international conference on computer communications, joint conference of the IEEE computer and communications societies
    • Olariu S, Stojmenovic I (2006) Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In: 25th IEEE international conference on computer communications, joint conference of the IEEE computer and communications societies, pp 2505–2516
    • (2006)
    • Olariu, S.1    Stojmenovic, I.2
  • 23
    • 84919498735 scopus 로고    scopus 로고
    • On the energy hole problem of nonuniform node distribution in wireless sensor networks. In: 3rd IEEE international conference mobile ad-hoc and sensor systems
    • Wu XB, Chen GH, Das SK (2006) On the energy hole problem of nonuniform node distribution in wireless sensor networks. In: 3rd IEEE international conference mobile ad-hoc and sensor systems, pp 100–107
    • (2006)
    • Wu, X.B.1    Chen, G.H.2    Das, S.K.3
  • 24
    • 34548851055 scopus 로고    scopus 로고
    • Data capacity improvement of wireless sensor network using non-uniform sensor distribution
    • Lian J, Naik K, Agnew GB (2006) Data capacity improvement of wireless sensor network using non-uniform sensor distribution. Int J Distrib Sens Netw 2(2):121–145
    • (2006) Int J Distrib Sens Netw , vol.2 , Issue.2 , pp. 121-145
    • Lian, J.1    Naik, K.2    Agnew, G.B.3
  • 25
    • 85032751965 scopus 로고    scopus 로고
    • A lecture on compressing sensing
    • Baraniuk RG (2007) A lecture on compressing sensing. IEEE Signal Process Mag 24(4):118–121
    • (2007) IEEE Signal Process Mag , vol.24 , Issue.4 , pp. 118-121
    • Baraniuk, R.G.1
  • 26
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • Chen S, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159
    • (2001) SIAM Rev , vol.43 , Issue.1 , pp. 129-159
    • Chen, S.1    Donoho, D.L.2    Saunders, M.A.3
  • 27
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Bruckstein AM, Donoho DL, Elad M (2009) From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev 51(1):34–81
    • (2009) SIAM Rev , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 28
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215
    • (2005) IEEE Trans Inf Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 29
    • 77955996351 scopus 로고    scopus 로고
    • Burg A (2010a) Matching pursuit: evaluation and implementation for LTE channel estimation
    • Paris: France
    • Maechler P, Greisen P, Felber N, Burg A (2010a) Matching pursuit: evaluation and implementation for LTE channel estimation. In: Proceedings of ISCAS, Paris, France, pp 589–592
    • Proceedings of ISCAS , pp. 589-592
    • Maechler, P.1    Greisen, P.2    Felber, N.3
  • 31
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from partial information via orthogonal matching pursuit
    • Tropp JA, Gilbert AC (2007) Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666
    • (2007) IEEE Trans Inf Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.