메뉴 건너뛰기




Volumn 207, Issue , 2014, Pages 271-279

Automatic classification of segmented MRI data combining independent component analysis and support vector machines

Author keywords

Alzheimer's disease; independent component analysis; magnetic resonance imaging; mild cognitive impairment; support vector machine

Indexed keywords

CEREBROSPINAL FLUID; CLASSIFICATION (OF INFORMATION); DISEASE CONTROL; INDEPENDENT COMPONENT ANALYSIS; MAGNETIC RESONANCE IMAGING; NEURODEGENERATIVE DISEASES; NEUROIMAGING; VECTOR SPACES;

EID: 84918767430     PISSN: 09269630     EISSN: 18798365     Source Type: Book Series    
DOI: 10.3233/978-1-61499-474-9-271     Document Type: Conference Paper
Times cited : (11)

References (23)
  • 1
    • 0037293284 scopus 로고    scopus 로고
    • Neuroimaging and early diagnosis of alzheimers disease: A look to the future
    • Petrella, J. R., Coleman, R. E., Doraiswamy, P. M., 2003. Neuroimaging and Early Diagnosis of Alzheimers Disease: A Look to the Future. Radiology. 226, 315-336.
    • (2003) Radiology , vol.226 , pp. 315-336
    • Petrella, J.R.1    Coleman, R.E.2    Doraiswamy, P.M.3
  • 3
    • 39749189507 scopus 로고    scopus 로고
    • Detection of prodromal Alzheimers disease via pattern classification of magnetic resonance imaging
    • Davatzikos, C., Fan, Y., Wu, X., Shen, D., Resnick, S. M., 2008. Detection of prodromal Alzheimers disease via pattern classification of magnetic resonance imaging. Neurobiology of aging. 29, 514-523.
    • (2008) Neurobiology of Aging , vol.29 , pp. 514-523
    • Davatzikos, C.1    Fan, Y.2    Wu, X.3    Shen, D.4    Resnick, S.M.5
  • 4
    • 43549110513 scopus 로고    scopus 로고
    • Role of imaging techniques in the diagnosis of dementia
    • O'Brien, J. T., 2007. Role of imaging techniques in the diagnosis of dementia. Br. J. Radiol. 80, 71-77.
    • (2007) Br. J. Radiol. , vol.80 , pp. 71-77
    • O'Brien, J.T.1
  • 6
    • 79958134346 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification by an improved artificial bee colony algorithm
    • Zhang, Y., Wu, L., Wang, S., 2011. Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Progress In Electromagnetics Research. 116, 65-79.
    • (2011) Progress in Electromagnetics Research. , vol.116 , pp. 65-79
    • Zhang, Y.1    Wu, L.2    Wang, S.3
  • 11
    • 4544236591 scopus 로고    scopus 로고
    • Discrimination between alzheimers dementia and controls by automated analysis of statistical parametric maps of 99mTc-HMPAO-SPECT volumes
    • Yin, T. K., Chiu, N. T. 2004. Discrimination between alzheimers dementia and controls by automated analysis of statistical parametric maps of 99mTc-HMPAO-SPECT volumes. In: Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering, 183-190.
    • (2004) Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering , pp. 183-190
    • Yin, T.K.1    Chiu, N.T.2
  • 12
    • 84897036365 scopus 로고    scopus 로고
    • A review of multivariate analyses in imaging genetics
    • Jingyu, Liu., Vince, D. Calhoun. 2014. A review of multivariate analyses in imaging genetics. Front Neuroinform, 8.
    • (2014) Front Neuroinform , vol.8
    • Jingyu, L.1    Vince, D.C.2
  • 13
    • 0016823810 scopus 로고
    • Mini-mental state: A practical method for grading the cognitive state of patients for the clinician
    • Folstein, M. F., Folstein, S. E., McHugh, P. R., 1975. Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatry Res. 12, 189-198.
    • (1975) J. Psychiatry Res. , vol.12 , pp. 189-198
    • Folstein, M.F.1    Folstein, S.E.2    McHugh, P.R.3
  • 14
    • 84918826086 scopus 로고    scopus 로고
    • Group T SPM8, 2011. Functional Imaging Laboratory, Institute of Neurology 12, Queen Square, Lonon WC1N 3BG, UK
    • Ashburner, J., Group T SPM8, 2011. Functional Imaging Laboratory, Institute of Neurology 12, Queen Square, Lonon WC1N 3BG, UK.
    • Ashburner, J.1
  • 15
    • 84918791810 scopus 로고    scopus 로고
    • Psychiatry SBMGD, Vbm toolboxes, 2013. University of Jena
    • Psychiatry SBMGD, Vbm toolboxes, 2013. University of Jena. URL http://dbm. neuro. unijena. de/vbm8/VBM8-Manual. pdf.
  • 16
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvarinen, A., 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks. 10, 626-634.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 626-634
    • Hyvarinen, A.1
  • 17
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvarinen, A., Oja, E., 2000. Independent component analysis: Algorithms and applications, Neural Networks. 13, 411-430.
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 18
    • 57649213849 scopus 로고    scopus 로고
    • Joint source based morphometry identifies linked gray and white matter group differences
    • Xu, L., Pearlson, G., Calhoun, V. D., 2009. Joint source based morphometry identifies linked gray and white matter group differences. Neuroimage. 44, 777-789.
    • (2009) Neuroimage , vol.44 , pp. 777-789
    • Xu, L.1    Pearlson, G.2    Calhoun, V.D.3
  • 19
    • 0031702801 scopus 로고    scopus 로고
    • Independent component analysis of fMRI data: Examining the assumptions
    • McKeown, M. J., Sejnowski, T. J., 1998. Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp. 6, 368-372.
    • (1998) Hum Brain Mapp. , vol.6 , pp. 368-372
    • McKeown, M.J.1    Sejnowski, T.J.2
  • 21
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvarinen, A., 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Net, 10, 626-634.
    • (1999) IEEE Trans Neural Net , vol.10 , pp. 626-634
    • Hyvarinen, A.1
  • 22
    • 34249753618 scopus 로고
    • Support vector machine
    • Cortes, C., Vapnik, V., 1995. Support vector machine. Machine Learning. 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.