-
1
-
-
0000036529
-
Asymptotic enumeration of regular matrices
-
BÉKÉSSY, A., BÉKÉSSY, P. AND KOMLÓS, J. (1972). Asymptotic enumeration of regular matrices. Studia Sci. Math. Hungar. 7, 343-353.
-
(1972)
Studia Sci. Math. Hungar.
, vol.7
, pp. 343-353
-
-
Békéssy, A.1
Békéssy, P.2
Komlós, J.3
-
2
-
-
0000664045
-
The asymptotic number of labeled graphs with given degree sequences
-
BENDER, E. A. AND CANFIELD, E. R. (1978). The asymptotic number of labeled graphs with given degree sequences. J. Combinatorial Theory A 24, 296-307.
-
(1978)
J. Combinatorial Theory A
, vol.24
, pp. 296-307
-
-
Bender, E.A.1
Canfield, E.R.2
-
3
-
-
84873082616
-
Characterizing optimal sampling of binary contingency tables via the configuration model
-
BLANCHET, J. AND STAUFFER, A. (2013). Characterizing optimal sampling of binary contingency tables via the configuration model. Random Structures Algorithms 42, 159-184.
-
(2013)
Random Structures Algorithms
, vol.42
, pp. 159-184
-
-
Blanchet, J.1
Stauffer, A.2
-
4
-
-
85012603843
-
A probabilistic proof of an asymptotic formula for the number of labelled regular graphs
-
BOLLOBÁS, B. (1980).A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Europ. J. Combinatorics 1, 311-316.
-
(1980)
Europ. J. Combinatorics
, vol.1
, pp. 311-316
-
-
Bollobás, B.1
-
5
-
-
11944253901
-
-
2nd edn. Cambridge University Press
-
BOLLOBÁS, B. (2001). Random Graphs, 2nd edn. Cambridge University Press.
-
(2001)
Random Graphs
-
-
Bollobás, B.1
-
8
-
-
30544437318
-
Asymptotic enumeration of sparse 0-1 matrices with irregular row and column sums
-
GREENHILL, C., MCKAY, B. D. AND WANG, X. (2006). Asymptotic enumeration of sparse 0-1 matrices with irregular row and column sums. J. Combinatorial Theory A 113, 291-324.
-
(2006)
J. Combinatorial Theory A
, vol.113
, pp. 291-324
-
-
Greenhill, C.1
McKay, B.D.2
Wang, X.3
-
10
-
-
64249139214
-
The probability that a random multigraph is simple
-
JANSON, S. (2009). The probability that a random multigraph is simple. Combinatorics Prob. Comput. 18, 205-225.
-
(2009)
Combinatorics Prob. Comput.
, vol.18
, pp. 205-225
-
-
Janson, S.1
-
11
-
-
52949151543
-
Asymptotic normality of the k -core in random graphs
-
JANSON, S. AND LUCZAK, M. J. (2008). Asymptotic normality of the k -core in random graphs. Ann. Appl. Prob. 18, 1085-1137.
-
(2008)
Ann. Appl. Prob.
, vol.18
, pp. 1085-1137
-
-
Janson, S.1
Luczak, M.J.2
-
12
-
-
84918593893
-
Law of large numbers for the SIR epidemic on a random graph with given degrees
-
JANSON, S., LUCZAK, M. AND WINDRIDGE, P. (2014). Law of large numbers for the SIR epidemic on a random graph with given degrees. Random Structures Algorithms 45, 724-761.
-
(2014)
Random Structures Algorithms
, vol.45
, pp. 724-761
-
-
Janson, S.1
Luczak, M.2
Windridge, P.3
-
13
-
-
0141525811
-
Asymptotics for 0-1 matrices with prescribed line sums
-
(Waterloo, Ontario, 1982), Academic Press, Toronto, ON
-
MCKAY, B. D. (1984). Asymptotics for 0-1 matrices with prescribed line sums. In Enumeration and Design (Waterloo, Ontario, 1982), Academic Press, Toronto, ON, pp. 225-238.
-
(1984)
Enumeration and Design
, pp. 225-238
-
-
McKay, B.D.1
-
14
-
-
0002767066
-
Asymptotics for symmetric 0-1 matrices with prescribed row sums
-
MCKAY, B. D. (1985). Asymptotics for symmetric 0-1 matrices with prescribed row sums. Ars Combinatoria 19A, 15-25.
-
(1985)
Ars Combinatoria
, vol.19 A
, pp. 15-25
-
-
McKay, B.D.1
-
16
-
-
77954499023
-
-
Cambridge University Press
-
OLVER, F. W. J., LOZIER, D. W., BOISVERT, R. F. AND CLARK, C. W. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press.
-
(2010)
NIST Handbook of Mathematical Functions
-
-
Olver, F.W.J.1
Lozier, D.W.2
Boisvert, R.F.3
Clark, C.W.4
-
18
-
-
0010746686
-
The asymptotic distribution of short cycles in random regular graphs
-
WORMALD, N. C. (1981). The asymptotic distribution of short cycles in random regular graphs. J. Combinatorial Theory B 31, 168-182.
-
(1981)
J. Combinatorial Theory B
, vol.31
, pp. 168-182
-
-
Wormald, N.C.1
|