-
1
-
-
0000786435
-
The homogeneous chaos
-
N. Wiener, “The homogeneous chaos,” Amer. J. Math., vol. 60, pp. 897-936, 1938.
-
(1938)
Amer. J. Math.
, vol.60
, pp. 897-936
-
-
Wiener, N.1
-
2
-
-
84941501572
-
Cambridge, Mass.: M.I.T. Press, and New York: Wiley
-
Nonlinear Problems in Random Theory. Cambridge, Mass.: M.I.T. Press, and New York: Wiley, 1958.
-
(1958)
Nonlinear Problems in Random Theory
-
-
-
3
-
-
84972503912
-
Multiple Wiener integral
-
also “Spectral type of shift transformations of differential process with stationary increments, ”Trans. Amer. Math. Soc., vol. 81, pp. 253-263, 1956.
-
K. Itô, “Multiple Wiener integral,” J. Math. Soc. Japan, vol. 13, no. 1, pp. 157–169, 1951; also “Spectral type of shift transformations of differential process with stationary increments,” Trans. Amer. Math. Soc., vol. 81, pp. 253-263,1956.
-
(1951)
J. Math. Soc. Japan
, vol.13
, Issue.1
, pp. 157-169
-
-
Itô, K.1
-
4
-
-
0000148817
-
The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals
-
Apr.
-
R. H. Cameron and W. T. Martin, “The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals,” Ann. Math., vol. 48, pp. 385–392, Apr. 1947.
-
(1947)
Ann. Math.
, vol.48
, pp. 385-392
-
-
Cameron, R.H.1
Martin, W.T.2
-
5
-
-
0346618319
-
Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral
-
pt. I. Berkeley and Los Angeles, Calif.: Univ. California Press
-
T. Hida and N. Ikeda, “Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral,” in Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, vol. 2, pt. I. Berkeley and Los Angeles, Calif.: Univ. California Press, 1965, pp. 117–143.
-
(1965)
Proc. 5th Berkeley Symp. Mathematical Statistics and Probability
, vol.2
, pp. 117-143
-
-
Hida, T.1
Ikeda, N.2
-
6
-
-
25644451590
-
Special functions connected with representations of the infinite dimensional motion group
-
N. Kôno “Special functions connected with representations of the infinite dimensional motion group,” J. Math. Kyoto Univ., vol. 6, no. 1, pp, 61–83, 1966.
-
(1966)
J. Math. Kyoto Univ.
, vol.6
, Issue.1
, pp. 61-83
-
-
Kôno, N.1
-
7
-
-
84941512727
-
On Hermite polynomials
-
(mimeo circular in Japanese)
-
“On Hermite polynomials,” in Seminar on Probabilitys vol. 27, (mimeo circular in Japanese), 1967.
-
(1967)
Seminar on Probabilitys
, vol.27
-
-
-
8
-
-
0004911282
-
Symbolic calculu. of the Wiener process and Wiener-Hermite functionals
-
T. Imamura, W. C. Meecham, and A. Siegel, “Symbolic calculu. of the Wiener process and Wiener-Hermite functionals,” J, Math. Phys., vol. 6, no. 5, pp. 695–706, 1965.
-
(1965)
J. Math. Phys.
, vol.6
, Issue.5
, pp. 695-706
-
-
Imamura, T.1
Meecham, W.C.2
Siegel, A.3
-
9
-
-
0013201447
-
Wiener-Hermite expansion in model turbulence in the late decay stage
-
A Siegel, T. Imamura, and W. C. Meecham, “Wiener-Hermite expansion in model turbulence in the late decay stage,” J. Math. Phys., vol. 6, no. 5, pp, 707-721, 1965.
-
(1965)
J. Math. Phys.
, vol.6
, Issue.5
, pp. 707-721
-
-
Siegel, A.1
Imamura, T.2
Meecham, W.C.3
-
12
-
-
33750438657
-
New York: McGraw-Hill
-
A Erdélyi W. Magnus, F. Oberhettinger, and T. Tricomi, Higher Transcendental Functions, vol. 2, New York: McGraw-Hill, 1953.
-
(1953)
Higher Transcendental Functions
, vol.2
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, T.4
-
13
-
-
0004073954
-
-
New York: Amer. Math. Soc., Coll. Publ
-
G. Szegö Orthogonal Polynomials. New York: Amer. Math. Soc., Coll. Publ., 1939.
-
(1939)
Orthogonal Polynomials
-
-
Szegö, G.1
-
14
-
-
84980073665
-
Note on N-dimensional Hermite polynomials
-
Dec
-
H. Grad, “Note on N-dimensional Hermite polynomials,” Commun. Pure Appl. Math., vol. 2, pp. 325-330, Dec, 1949.
-
(1949)
Commun. Pure Appl. Math.
, vol.2
, pp. 325-330
-
-
Grad, H.1
-
19
-
-
84914974921
-
Optimal nonlinear filtering for independent increment processes-Part I
-
Oct. îº, “Optimal nonlinear filtering for independent increment processes-Part II,” ibid., vol. IT-13, pp. 568-578, Oct. 1967.
-
J. R. Fisher and E. B. Stear, “Optimal nonlinear filtering for independent increment processes-Part I,” IEEE Trans. Inform. Theory, vol. IT-I3, pp. 558–568, Oct. 1967; îº, “Optimal nonlinear filtering for independent increment processes-Part II,” ibid., vol. IT-13, pp. 568-578, Oct. 1967.
-
(1967)
IEEE Trans. Inform. Theory
, vol.IT-I3
, pp. 558-568
-
-
Fisher, J.R.1
Stear, E.B.2
-
20
-
-
84954868205
-
Hermite functional expansions and the calculation of output autocorrelation and spectrum for any time-invariant nonlinear system with noise input
-
J. F. Barrett, “Hermite functional expansions and the calculation of output autocorrelation and spectrum for any time-invariant nonlinear system with noise input,” J. Electron. Contr., vol. 16 no. 1, pp. 107–113, 1964.
-
(1964)
J. Electron. Contr.
, vol.16
, Issue.1
, pp. 107-113
-
-
Barrett, J.F.1
-
21
-
-
0000661335
-
The use of functionals in the analysis of non-linear physical systems
-
J. F. Barrett, “The use of functionals in the analysis of non-linear physical systems,” J. Electron. Contr., vol. 15, no. 6, pp. 567–615, 1963.
-
(1963)
J. Electron. Contr.
, vol.15
, Issue.6
, pp. 567-615
-
-
Barrett, J.F.1
|