메뉴 건너뛰기




Volumn 9783527411047, Issue , 2014, Pages 153-176

Thermodynamic Model of Criticality in the Cortex Based on EEG/ECoG Data

Author keywords

Critical Phase Transitions; Dissipative Thermodynamics; EEG ECoG; Mesoscopic Neurodynamics; Metastability; Neuropercolation

Indexed keywords

BRAIN; GRAPH THEORY; PHASE TRANSITIONS; SOLVENTS; SUPERCONDUCTING MATERIALS; THERMODYNAMIC PROPERTIES;

EID: 84917702449     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9783527651009.ch7     Document Type: Chapter
Times cited : (15)

References (62)
  • 3
    • 0015072706 scopus 로고
    • Biological flow structures and their relation to chemodiffusional coupling.
    • Katchalsky, A. (1971) Biological flow structures and their relation to chemodiffusional coupling. Neurosci. Res. Progr. Bull., 9, 397-413.
    • (1971) Neurosci. Res. Progr. Bull. , vol.9 , pp. 397-413
    • Katchalsky, A.1
  • 6
    • 0021927137 scopus 로고
    • A theoretical model of phase transitions in human hand movements.
    • Haken, H., Kelso, J., and Bunz, H. (1985) A theoretical model of phase transitions in human hand movements. Biol. Cybern., 51, 347-356.
    • (1985) Biol. Cybern. , vol.51 , pp. 347-356
    • Haken, H.1    Kelso, J.2    Bunz, H.3
  • 9
    • 0348010295 scopus 로고    scopus 로고
    • Neuronal avalanches in neocortical circuits.
    • Beggs, J.M. and Plenz, D. (2003) Neuronal avalanches in neocortical circuits. J. Neurosci., 23 (35), 11 167.
    • (2003) J. Neurosci. , vol.23 , Issue.35 , pp. 11 167
    • Beggs, J.M.1    Plenz, D.2
  • 11
    • 37549027700 scopus 로고    scopus 로고
    • The criticality hypothesis:how local cortical networks might optimize information processing.
    • Beggs, J. (2008) The criticality hypothesis:how local cortical networks might optimize information processing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 366 (1864), 329-343.
    • (2008) Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. , vol.366 , Issue.1864 , pp. 329-343
    • Beggs, J.1
  • 13
    • 20644468605 scopus 로고    scopus 로고
    • Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions.
    • Kozma, R. and Puljic, M. (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybern., 92, 367-379.
    • (2005) Biol. Cybern. , vol.92 , pp. 367-379
    • Kozma, R.1    Puljic, M.2
  • 14
    • 67349253596 scopus 로고    scopus 로고
    • Simulated power spectral density (PSD) of background electrocorticogram (ECoG).
    • Freeman, W. and Zhai, J. (2009) Simulated power spectral density (PSD) of background electrocorticogram (ECoG). Cogn. Neurodyn., 3 (1), 97-103.
    • (2009) Cogn. Neurodyn. , vol.3 , Issue.1 , pp. 97-103
    • Freeman, W.1    Zhai, J.2
  • 15
    • 77949830525 scopus 로고    scopus 로고
    • Self-organization without conservation:are neuronal avalanches generically critical?
    • Bonachela, J.A., de Franciscis, S., Torres, J.J., and Munoz, M.A. (2010) Self-organization without conservation:are neuronal avalanches generically critical? J. Stat. Mech.: Theory Exp., 2010 (02), P02 015.
    • (2010) J. Stat. Mech.: Theory Exp. , vol.2010 , Issue.2 , pp. P02 015
    • Bonachela, J.A.1    de Franciscis, S.2    Torres, J.J.3    Munoz, M.A.4
  • 17
    • 0032008353 scopus 로고    scopus 로고
    • Biologically modeled noise stabilizing neurodynamics for pattern recognition
    • Chang, H. and Freeman, W. (1998a) Biologically modeled noise stabilizing neurodynamics for pattern recognition. Int. J. Bifurcation Chaos, 8 (2), 321-345.
    • (1998) Int. J. Bifurcation Chaos , vol.8 , Issue.2 , pp. 321-345
    • Chang, H.1    Freeman, W.2
  • 18
    • 0032214553 scopus 로고    scopus 로고
    • Local homeostasis stabilizes a model of the olfactory system globally in respect to perturbations by input during pattern classification
    • Chang, H. and Freeman, W. (1998b) Local homeostasis stabilizes a model of the olfactory system globally in respect to perturbations by input during pattern classification. Int. J. Bifurcation Chaos, 8 (11), 2107-2123.
    • (1998) Int. J. Bifurcation Chaos , vol.8 , Issue.11 , pp. 2107-2123
    • Chang, H.1    Freeman, W.2
  • 19
    • 0023186918 scopus 로고
    • Simulation of chaotic EEG patterns with a dynamic model of the olfactory system.
    • Freeman, W. (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybern., 56 (2-3), 139-150.
    • (1987) Biol. Cybern. , vol.56 , Issue.2-3 , pp. 139-150
    • Freeman, W.1
  • 20
    • 0026013637 scopus 로고
    • The physiology of perception.
    • Freeman, W. (1991) The physiology of perception. Sci. Am., 264 (2), 78-85.
    • (1991) Sci. Am. , vol.264 , Issue.2 , pp. 78-85
    • Freeman, W.1
  • 21
    • 0029196909 scopus 로고
    • Chaos in the brain:possible roles in biological intelligence.
    • Freeman, W. (1995) Chaos in the brain:possible roles in biological intelligence. Int. J. Intell. Syst., 10 (1), 71-88.
    • (1995) Int. J. Intell. Syst. , vol.10 , Issue.1 , pp. 71-88
    • Freeman, W.1
  • 22
    • 19544389090 scopus 로고    scopus 로고
    • Design and implementation of a biologically realistic olfactory cortex in analog VLSI.
    • Principe, J., Tavares, V., Harris, J., and Freeman, W. (2001) Design and implementation of a biologically realistic olfactory cortex in analog VLSI. Proc. IEEE, 89, 1030-1051.
    • (2001) Proc. IEEE , vol.89 , pp. 1030-1051
    • Principe, J.1    Tavares, V.2    Harris, J.3    Freeman, W.4
  • 25
    • 50849089718 scopus 로고    scopus 로고
    • Neuropercolation.
    • Kozma, R. (2007) Neuropercolation. Scholarpedia, 2 (8), 1360.
    • (2007) Scholarpedia , vol.2 , Issue.8 , pp. 1360
    • Kozma, R.1
  • 27
    • 3843051341 scopus 로고    scopus 로고
    • Origin, structure, and role of background EEG activity. Part 1. analytic amplitude.
    • Freeman, W. (2004) Origin, structure, and role of background EEG activity. Part 1. analytic amplitude. Clin. Neurophysiol., 115 (9), 2077-2088.
    • (2004) Clin. Neurophysiol. , vol.115 , Issue.9 , pp. 2077-2088
    • Freeman, W.1
  • 28
    • 54749154782 scopus 로고    scopus 로고
    • Interdispl Intermittent spatio-temporal desynchronization and sequenced synchrony in ECoG signals.
    • Kozma, R. and Freeman, W. (2008) Interdispl Intermittent spatio-temporal desynchronization and sequenced synchrony in ECoG signals. Interdispl. J. Chaos, 18, 037 131.
    • (2008) Interdispl. J. Chaos , vol.18 , pp. 037 131
    • Kozma, R.1    Freeman, W.2
  • 29
    • 77952890439 scopus 로고    scopus 로고
    • Freeman's mass action.
    • Freeman, W. and Kozma, R. (2010) Freeman's mass action. Scholarpedia, 5 (1), 8040.
    • (2010) Scholarpedia , vol.5 , Issue.1 , pp. 8040
    • Freeman, W.1    Kozma, R.2
  • 31
    • 50849129227 scopus 로고    scopus 로고
    • Freeman k-set.
    • Freeman, W. and Erwin, H. (2008) Freeman k-set. Scholarpedia, 3 (2), 3238.
    • (2008) Scholarpedia , vol.3 , Issue.2 , pp. 3238
    • Freeman, W.1    Erwin, H.2
  • 32
    • 0032052492 scopus 로고    scopus 로고
    • Optimization of olfactory model in software to give power spectra reveals numerical instabilities in solutions governed by aperiodic (chaotic) attractors
    • Chang, H. and Freeman, W. (1998c) Optimization of olfactory model in software to give power spectra reveals numerical instabilities in solutions governed by aperiodic (chaotic) attractors. Neural Networks, 11, 449-466.
    • (1998) Neural Networks , vol.11 , pp. 449-466
    • Chang, H.1    Freeman, W.2
  • 33
    • 0040437042 scopus 로고    scopus 로고
    • Chaotic resonance - methods and applications for robust classification of noisy and variable patterns.
    • Kozma, R. and Freeman, W. (2001) Chaotic resonance - methods and applications for robust classification of noisy and variable patterns. Int. J. Bifurcation & Chaos, 11 (6), 1607-1629.
    • (2001) Int. J. Bifurcation & Chaos , vol.11 , Issue.6 , pp. 1607-1629
    • Kozma, R.1    Freeman, W.2
  • 34
    • 4644226686 scopus 로고    scopus 로고
    • Dynamical analysis of neural oscillators in an olfactory cortex model.
    • Xu, D. and Principe, J. (2004) Dynamical analysis of neural oscillators in an olfactory cortex model. IEEE Trans. Neural Netw., 5 (5), 1053-1062.
    • (2004) IEEE Trans. Neural Netw. , vol.5 , Issue.5 , pp. 1053-1062
    • Xu, D.1    Principe, J.2
  • 35
    • 33750390639 scopus 로고    scopus 로고
    • Stability of coupled excitatory-inhibitory neural populations and application to control of multi-stable systems.
    • Ilin, R. and Kozma, R. (2006) Stability of coupled excitatory-inhibitory neural populations and application to control of multi-stable systems. Phys. Lett. A, 360 (1), 66-83.
    • (2006) Phys. Lett. A , vol.360 , Issue.1 , pp. 66-83
    • Ilin, R.1    Kozma, R.2
  • 36
    • 0742321285 scopus 로고    scopus 로고
    • Habituation in the KIII olfactory model with chemical sensor arrays.
    • Gutierrez-Osuna, R. and Gutierrez-Galvez, A. (2003) Habituation in the KIII olfactory model with chemical sensor arrays. IEEE Trans. Neural Netw., 14 (6), 1565-1568.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.6 , pp. 1565-1568
    • Gutierrez-Osuna, R.1    Gutierrez-Galvez, A.2
  • 37
    • 0035108245 scopus 로고    scopus 로고
    • Biocomplexity: adaptive behavior in complex stochastic systems.
    • Freeman, W., Kozma, R., and Werbos, P. (2001) Biocomplexity: adaptive behavior in complex stochastic systems. BioSystems, 59, 109-123.
    • (2001) BioSystems , vol.59 , pp. 109-123
    • Freeman, W.1    Kozma, R.2    Werbos, P.3
  • 38
    • 34249673496 scopus 로고    scopus 로고
    • Time series prediction using chaotic neural networks: case study of cats benchmark test.
    • Beliaev, I. and Kozma, R. (2007) Time series prediction using chaotic neural networks: case study of cats benchmark test. Neurocomputing, 7 (13), 2426-2439.
    • (2007) Neurocomputing , vol.7 , Issue.13 , pp. 2426-2439
    • Beliaev, I.1    Kozma, R.2
  • 39
    • 19444379364 scopus 로고    scopus 로고
    • Chaotic neurodynamics for autonomous agents.
    • Harter, D. and Kozma, R. (2005) Chaotic neurodynamics for autonomous agents. IEEE Trans. Neural Netw., 16 (3), 565-579.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 565-579
    • Harter, D.1    Kozma, R.2
  • 42
    • 52349092296 scopus 로고    scopus 로고
    • Dissipation and spontaneous symmetry breaking in brain dynamics.
    • Freeman, W. and Vitiello, G. (2008) Dissipation and spontaneous symmetry breaking in brain dynamics. J. Phys. A:Math. Theory, 41, 304 042.
    • (2008) J. Phys. A:Math. Theory , vol.41 , pp. 304 042
    • Freeman, W.1    Vitiello, G.2
  • 43
    • 84865100434 scopus 로고    scopus 로고
    • Adaptation of the generalized carnot cycle to describe thermodynamics of cerebral cortex
    • International Joint Conference on Neural Networks IJCNN2012, 10-15 June, 2012, Brisbane, QLD
    • Freeman, W., Kozma, R., and Vitiello, G. (2012a) Adaptation of the generalized carnot cycle to describe thermodynamics of cerebral cortex. International Joint Conference on Neural Networks IJCNN2012, 10-15 June, 2012, Brisbane, QLD.
    • (2012)
    • Freeman, W.1    Kozma, R.2    Vitiello, G.3
  • 44
    • 84880811911 scopus 로고    scopus 로고
    • Hierarchical Random Cellular Neural Networks for System-Level Brain-Like Signal Processing.
    • Kozma, R. and Puljic, M. (2013) Hierarchical Random Cellular Neural Networks for System-Level Brain-Like Signal Processing. Neural Networks, 45, pp. 101-110.
    • (2013) Neural Networks , vol.45 , pp. 101-110
    • Kozma, R.1    Puljic, M.2
  • 45
    • 0001540595 scopus 로고
    • Publicationes Mathematicae
    • Erdo{double acute accent}s, P. and Rényi, A. (1959) On Random Graphs I, Publicationes Mathematicae, pp. 290-297.
    • (1959) On Random Graphs I , pp. 290-297
    • Erdos, P.1    Rényi, A.2
  • 46
    • 84968486917 scopus 로고
    • The evolution of random graphs.
    • Bollobás, B. (1984) The evolution of random graphs. Trans. Am. Math. Soc., 286 (1), 257-274.
    • (1984) Trans. Am. Math. Soc. , vol.286 , Issue.1 , pp. 257-274
    • Bollobás, B.1
  • 47
    • 34547197519 scopus 로고    scopus 로고
    • Cambridge University Press, New York
    • Bollobas, B. and Riordan, O. (2006) Percolation, Cambridge University Press, New York.
    • (2006) Percolation
    • Bollobas, B.1    Riordan, O.2
  • 48
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of ''small-world'' networks.
    • Watts, D. and Strogatz, S. (1998) Collective dynamics of ''small-world'' networks. Nature, 393, 440-442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.1    Strogatz, S.2
  • 49
    • 33744924504 scopus 로고    scopus 로고
    • Small-world connectivity, motif composition, and complexity of fractal neuronal connections.
    • Sporns, O. (2006) Small-world connectivity, motif composition, and complexity of fractal neuronal connections. BioSystems, 85, 55-64.
    • (2006) BioSystems , vol.85 , pp. 55-64
    • Sporns, O.1
  • 51
    • 0040628914 scopus 로고
    • An introduction to the Ising model.
    • Cipra, A. (1987) An introduction to the Ising model. Am. Math. Mon., 94 (10), 937-959.
    • (1987) Am. Math. Mon. , vol.94 , Issue.10 , pp. 937-959
    • Cipra, A.1
  • 52
    • 0001753585 scopus 로고    scopus 로고
    • Universality in ising-like phase transitions of lattices of coupled chaotic maps.
    • Marcq, P., Chaté, H., and Manneville, P. (1997) Universality in ising-like phase transitions of lattices of coupled chaotic maps. Phys. Rev. E, 55 (3), 2606-2627.
    • (1997) Phys. Rev. E , vol.55 , Issue.3 , pp. 2606-2627
    • Marcq, P.1    Chaté, H.2    Manneville, P.3
  • 54
    • 33749328189 scopus 로고    scopus 로고
    • Large deviations for mean field models of probabilistic cellular automata.
    • Balister, P., Bollobás, B., and Kozma, R. (2006) Large deviations for mean field models of probabilistic cellular automata. Random Struct. Algor., 29 (3), 399-415.
    • (2006) Random Struct. Algor. , vol.29 , Issue.3 , pp. 399-415
    • Balister, P.1    Bollobás, B.2    Kozma, R.3
  • 55
    • 20644468605 scopus 로고    scopus 로고
    • Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions.
    • Kozma, R., Puljic, M., Bollobás, B., Balister, P., and Freeman, W. (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybern., 92 (6), 367-379.
    • (2005) Biol. Cybern. , vol.92 , Issue.6 , pp. 367-379
    • Kozma, R.1    Puljic, M.2    Bollobás, B.3    Balister, P.4    Freeman, W.5
  • 56
    • 4243777415 scopus 로고
    • Finite size scaling analysis of ising model block distribution functions.
    • Binder, K. (1981) Finite size scaling analysis of ising model block distribution functions. Z. Phys. B: Condens. Matter, 43 (2), 119-140.
    • (1981) Z. Phys. B: Condens. Matter , vol.43 , Issue.2 , pp. 119-140
    • Binder, K.1
  • 57
    • 50849107033 scopus 로고    scopus 로고
    • Narrowband oscillations in probabilistic cellular automata.
    • Puljic, M. and Kozma, R. (2008) Narrowband oscillations in probabilistic cellular automata. Phys. Rev. E, 78 (026214), 6.
    • (2008) Phys. Rev. E , vol.78 , Issue.26214 , pp. 6
    • Puljic, M.1    Kozma, R.2
  • 58
    • 4243819810 scopus 로고
    • New Monte Carlo technique for studying phase transitions.
    • Ferrenberg, A. and Swendsen, R. (1988) New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett., 61 (23), 2635-2638, doi: 10.1103/Phys-RevLett.61.2635.
    • (1988) Phys. Rev. Lett. , vol.61 , Issue.23 , pp. 2635-2638
    • Ferrenberg, A.1    Swendsen, R.2
  • 59
    • 0001053408 scopus 로고
    • Dynamic monte carlo measurement of critical exponents.
    • Li, Z., L, S., and B, Z. (1995) Dynamic monte carlo measurement of critical exponents. Phys. Rev. Lett., 74 (17), 3396-3398, doi: 10.1103/Phys-RevLett.74.3396.
    • (1995) Phys. Rev. Lett. , vol.74 , Issue.17 , pp. 3396-3398
    • Li, Z.1    L, S.2    B, Z.3
  • 60
    • 4243957380 scopus 로고    scopus 로고
    • Binder's cumulant for the Kosterlitz-Thouless transition.
    • Loison, D. (1999) Binder's cumulant for the Kosterlitz-Thouless transition. Journal of Physics: Condensed Matter, 11 (34), 10.1088/0953-8984/11/34/101.
    • (1999) Journal of Physics: Condensed Matter , vol.11 , Issue.34
    • Loison, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.