-
3
-
-
0020478179
-
Mach’s principle and the structure of dynamical theories
-
Barbour, J. B., & Bertotti, B. (1982). Mach’s principle and the structure of dynamical theories. Proceedings of Royal Society A, 382(1783), 295–306.
-
(1982)
Proceedings of Royal Society A
, vol.382
, Issue.1783
, pp. 295-306
-
-
Barbour, J.B.1
Bertotti, B.2
-
4
-
-
0036294389
-
Relativity without relativity. Classical and Quantum Gravity, 19, 3217–3248
-
arXiv:gr-qc/0012089
-
Barbour, J. B., Foster, B. Z. & Murchadha, N. O’ (2002). Relativity without relativity. Classical and Quantum Gravity, 19, 3217–3248. arXiv:gr-qc/0012089
-
(2002)
arXiv:gr-qc/0012089
-
-
Barbour, J.B.1
Foster, B.Z.2
Murchadha, N.O.’.3
-
5
-
-
84918789233
-
Special theory of relativity postulated on homogeneity of space and time and on relativity principle
-
Caligiuri, L. M., & Sorli, A. (2013). Special theory of relativity postulated on homogeneity of space and time and on relativity principle. American Journal of Modern Physics, 2(6), 375–382. doi:10.11648/j.ajmp.20130206.25
-
(2013)
American Journal of Modern Physics
, vol.2
, Issue.6
, pp. 375-382
-
-
Caligiuri, L.M.1
Sorli, A.2
-
6
-
-
79955830348
-
-
Caticha, A. (2011). Entropic dynamics, time and quantum theory. Journal of Physics A: Mathematical and Theoretical, 44(22), 225303; e-print [quant-ph]
-
Caticha, A. (2011). Entropic dynamics, time and quantum theory. Journal of Physics A: Mathematical and Theoretical, 44(22), 225303; e-print arXiv:1005.2357v3 [quant-ph]
-
-
-
-
8
-
-
33947385649
-
Can quantum-mechanical description of physical reality be considered complete?
-
Einstein, A., Podolski, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777–780.
-
(1935)
Physical Review
, vol.47
, Issue.10
, pp. 777-780
-
-
Einstein, A.1
Podolski, B.2
Rosen, N.3
-
9
-
-
85039746133
-
Quantum mechanics and discrete time from “timeless” classical dynamics. Lecture Notes in Physics (Vol. 633, p. 196)
-
arXiv:gr-qc/0307014v1
-
Elze, H. T. (2003). Quantum mechanics and discrete time from “timeless” classical dynamics. Lecture Notes in Physics (Vol. 633, p. 196). e-print arXiv:gr-qc/0307014v1
-
(2003)
e-print arXiv:gr-qc/0307014v1
-
-
Elze, H.T.1
-
10
-
-
79952505083
-
Non-locality and the symmetrized quantum potential
-
Fiscaletti, D., & Sorli, A. (2008). Non-locality and the symmetrized quantum potential. Physics Essays, 21(4), 245–251.
-
(2008)
Physics Essays
, vol.21
, Issue.4
, pp. 245-251
-
-
Fiscaletti, D.1
Sorli, A.2
-
11
-
-
84952666343
-
Three-dimensional space as a medium of quantum entanglement
-
Fiscaletti, D., & Sorli, A. (2012). Three-dimensional space as a medium of quantum entanglement. Annales UMCS Sectio AAA: Physica, 57, 47–72.
-
(2012)
Annales UMCS Sectio AAA: Physica
, vol.57
, pp. 47-72
-
-
Fiscaletti, D.1
Sorli, A.2
-
12
-
-
84929338823
-
Non-local quantum geometry and three-dimensional space as a direct information medium
-
Fiscaletti, D., & Sorli, A. (2014). Non-local quantum geometry and three-dimensional space as a direct information medium. Quantum Matter, 3(3), 200–214.
-
(2014)
Quantum Matter
, vol.3
, Issue.3
, pp. 200-214
-
-
Fiscaletti, D.1
Sorli, A.2
-
15
-
-
84901423576
-
Transaction and non-locality in quantum field theory
-
Licata, I. (2014). Transaction and non-locality in quantum field theory. European Physical Journal Web of Conferences, 70, 00039.
-
(2014)
European Physical Journal Web of Conferences
, vol.70
, pp. 00039
-
-
Licata, I.1
-
16
-
-
85039708357
-
Space does not exist
-
Markopoulou, F. (2009). Space does not exist, so time can. http://arxiv.org/abs/0909.1861
-
(2009)
so time can
-
-
Markopoulou, F.1
-
18
-
-
85039731711
-
-
Moreva, E., Brida, G., Gramegna, M., Giovannetti, V., Maccone, L. & Genovese, M. (2013). Time from quantum entanglement: an experimental illustration. arXiv:1310.4691
-
(2013)
Time from quantum entanglement: an experimental illustration. arXiv
, vol.1310
, pp. 4691
-
-
Moreva, E.1
Brida, G.2
Gramegna, M.3
Giovannetti, V.4
Maccone, L.5
Genovese, M.6
-
19
-
-
85039705991
-
The nature of time: From a timeless Hamiltonian framework to clock time of metrology
-
Prati, E. (2009). The nature of time: From a timeless Hamiltonian framework to clock time of metrology. arXiv:0907.1707v1 [physics.class-ph]
-
(2009)
arXiv:0907.1707v1 [physics.class-ph]
-
-
Prati, E.1
-
20
-
-
22244465973
-
Time in quantum gravity: An hypothesis
-
Rovelli, C. (1991). Time in quantum gravity: An hypothesis. Physical Review D, 43(2), 442–456.
-
(1991)
Physical Review D
, vol.43
, Issue.2
, pp. 442-456
-
-
Rovelli, C.1
-
22
-
-
79952525994
-
Time is a reference system derived from light speed
-
Sorli, A., Fiscaletti, D., & Klinar, D. (2010). Time is a reference system derived from light speed. Physics Essays, 23(2), 330–332.
-
(2010)
Physics Essays
, vol.23
, Issue.2
, pp. 330-332
-
-
Sorli, A.1
Fiscaletti, D.2
Klinar, D.3
-
23
-
-
79959484679
-
New insights into the special theory of relativity
-
Sorli, A., Fiscaletti, D., & Klinar, D. (2011). New insights into the special theory of relativity. Physics Essays, 24(2), 313–318.
-
(2011)
Physics Essays
, vol.24
, Issue.2
, pp. 313-318
-
-
Sorli, A.1
Fiscaletti, D.2
Klinar, D.3
|