메뉴 건너뛰기




Volumn 39, Issue 12, 2014, Pages 8875-8887

A Hybrid Clustering Algorithm Based on Fuzzy c-Means and Improved Particle Swarm Optimization

Author keywords

Clustering; Exponential inertia weight; Fuzzy c means; Improved particle swarm optimization; Population centroid

Indexed keywords


EID: 84916606901     PISSN: 2193567X     EISSN: 21914281     Source Type: Journal    
DOI: 10.1007/s13369-014-1424-9     Document Type: Article
Times cited : (37)

References (34)
  • 1
    • 84929521912 scopus 로고    scopus 로고
    • Esmin, A.A.A.; Coelho, R.A.; Matwin, S.: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif. Intell. Rev. 1–23 (2013)
    • Esmin, A.A.A.; Coelho, R.A.; Matwin, S.: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif. Intell. Rev. 1–23. doi:10.1007/s10462-013-9400-4 (2013)
  • 2
    • 37349047955 scopus 로고    scopus 로고
    • A hybridized approach to data clustering
    • Kao, Y.T., Zahra, E., Kao, I.W.: A hybridized approach to data clustering. Expert Syst. Appl. 34(3), 1754–1762 (2008)
    • (2008) Expert Syst. Appl , vol.34 , Issue.3 , pp. 1754-1762
    • Kao, Y.T.1    Zahra, E.2    Kao, I.W.3
  • 3
    • 78049527645 scopus 로고    scopus 로고
    • Fuzzy c-means and fuzzy swarm for fuzzy clustering problem
    • Izakian, H., Abraham, A.: Fuzzy c-means and fuzzy swarm for fuzzy clustering problem. Expert Syst. Appl. 38, 1835–1838 (2011)
    • (2011) Expert Syst. Appl , vol.38 , pp. 1835-1838
    • Izakian, H.1    Abraham, A.2
  • 6
    • 0026359031 scopus 로고
    • A simulated annealing algorithm for the clustering problem
    • Selim, S.Z., Alsultan, K.: A simulated annealing algorithm for the clustering problem. Pattern Recognit. 24, 1003–1008 (1991)
    • (1991) Pattern Recognit , vol.24 , pp. 1003-1008
    • Selim, S.Z.1    Alsultan, K.2
  • 7
    • 0033882604 scopus 로고    scopus 로고
    • A tabu-search-based heuristic for clustering
    • Sung, C., Jin, H.: A tabu-search-based heuristic for clustering. Pattern Recognit. 33, 849–858 (2000)
    • (2000) Pattern Recognit , vol.33 , pp. 849-858
    • Sung, C.1    Jin, H.2
  • 8
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recognit. 33, 1455–1465 (2000)
    • (2000) Pattern Recognit , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 9
    • 49649111138 scopus 로고    scopus 로고
    • A honeybee-mating approach for cluster analysis
    • Fathian, M., Amiri, B.: A honeybee-mating approach for cluster analysis. Int. J. Adv. Manuf. Technol. 38, 809–821 (2008)
    • (2008) Int. J. Adv. Manuf. Technol , vol.38 , pp. 809-821
    • Fathian, M.1    Amiri, B.2
  • 12
    • 81855218654 scopus 로고    scopus 로고
    • A particle swarm optimization approach to clustering
    • Cura, T.: A particle swarm optimization approach to clustering. Expert Syst. Appl. 39, 1582–1588 (2012)
    • (2012) Expert Syst. Appl , vol.39 , pp. 1582-1588
    • Cura, T.1
  • 13
    • 77950189133 scopus 로고    scopus 로고
    • An artificial bee colony approach for clustering
    • Zhang, C., Ouyang, D., Ning, J.: An artificial bee colony approach for clustering. Expert Syst. Appl. 37, 4761–4767 (2010)
    • (2010) Expert Syst. Appl , vol.37 , pp. 4761-4767
    • Zhang, C.1    Ouyang, D.2    Ning, J.3
  • 14
    • 84870058393 scopus 로고    scopus 로고
    • Black hole: a new heuristic optimization approach for data clustering
    • Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)
    • (2013) Inf. Sci , vol.222 , pp. 175-184
    • Hatamlou, A.1
  • 15
    • 84876899318 scopus 로고    scopus 로고
    • A powerful hybrid clustering method based on modified stem cells and fuzzy c-means algorithms
    • Taherdangkoo, M., Bagheri, M.H.: A powerful hybrid clustering method based on modified stem cells and fuzzy c-means algorithms. Eng. Appl. Artif. Intell. 26, 1493–1502 (2013)
    • (2013) Eng. Appl. Artif. Intell , vol.26 , pp. 1493-1502
    • Taherdangkoo, M.1    Bagheri, M.H.2
  • 16
    • 84899680803 scopus 로고    scopus 로고
    • A hybrid approach for data clustering based on modified cohort intelligence and K-means
    • Krishnasamy, G., Kulkarni, A.J., Paramesran, R.: A hybrid approach for data clustering based on modified cohort intelligence and K-means. Expert Syst. Appl. 41(13), 6009–6016 (2014)
    • (2014) Expert Syst. Appl , vol.41 , Issue.13 , pp. 6009-6016
    • Krishnasamy, G.1    Kulkarni, A.J.2    Paramesran, R.3
  • 19
    • 33845987065 scopus 로고    scopus 로고
    • An improved ant colony algorithm for fuzzy clustering in image segmentation
    • Han, Y.F., Shi, P.F.: An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing 70, 665–671 (2007)
    • (2007) Neurocomputing , vol.70 , pp. 665-671
    • Han, Y.F.1    Shi, P.F.2
  • 20
    • 77956002248 scopus 로고    scopus 로고
    • Fuzzy clustering with artificial bee colony algorithm
    • Karaboga, D., Ozturk, C.: Fuzzy clustering with artificial bee colony algorithm. Sci. Res. Essays 5, 1899–1902 (2010)
    • (2010) Sci. Res. Essays , vol.5 , pp. 1899-1902
    • Karaboga, D.1    Ozturk, C.2
  • 21
    • 79151477817 scopus 로고    scopus 로고
    • A hybrid ant colony optimization technique for power signal pattern classification
    • Biswal, B., Dash, P.K., Mishra, S.: A hybrid ant colony optimization technique for power signal pattern classification. Expert Syst. Appl. 28, 6368–6375 (2011)
    • (2011) Expert Syst. Appl , vol.28 , pp. 6368-6375
    • Biswal, B.1    Dash, P.K.2    Mishra, S.3
  • 22
    • 79960368791 scopus 로고    scopus 로고
    • An improved fuzzy c means clustering algorithm based on PSO
    • Niu, Q., Huang, X.: An improved fuzzy c means clustering algorithm based on PSO. J. Softw. 6(5), 873–879 (2011)
    • (2011) J. Softw , vol.6 , Issue.5 , pp. 873-879
    • Niu, Q.1    Huang, X.2
  • 23
    • 70350106756 scopus 로고    scopus 로고
    • An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
    • Niknam, T., Amiri, B.: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 10(1), 183–197 (2010)
    • (2010) Appl. Soft Comput , vol.10 , Issue.1 , pp. 183-197
    • Niknam, T.1    Amiri, B.2
  • 24
    • 78049527645 scopus 로고    scopus 로고
    • Fuzzy c-means and fuzzy swarm for fuzzy clustering problem
    • Izakian, H., Abraham, A.: Fuzzy c-means and fuzzy swarm for fuzzy clustering problem. Expert Syst. Appl. 38, 1835–1838 (2011)
    • (2011) Expert Syst. Appl , vol.38 , pp. 1835-1838
    • Izakian, H.1    Abraham, A.2
  • 27
    • 84864397180 scopus 로고    scopus 로고
    • An improved particle swarm optimization algorithm based on self-adapted comprehensive learning
    • Gou, J., Wu, Z., Wang, J.: An improved particle swarm optimization algorithm based on self-adapted comprehensive learning. Adv. Sci. Lett. 11, 668–675 (2012)
    • (2012) Adv. Sci. Lett , vol.11 , pp. 668-675
    • Gou, J.1    Wu, Z.2    Wang, J.3
  • 30
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • Liang, J.; Qin, A.; Suganthan, P.N.; Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)
    • (2006) IEEE Trans. Evol. Comput , vol.10 , Issue.3 , pp. 281-295
    • Liang, J.1    Qin, A.2    Suganthan, P.N.3    Baskar, S.4
  • 31
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18 (2011)
    • (2011) Swarm Evol. Comput , vol.1 , pp. 3-18
    • Derrac, J.1    Garcia, S.2    Molina, D.3    Herrera, F.4
  • 32
    • 84881608232 scopus 로고    scopus 로고
    • Enhanced possibilistic fuzzy c-means algorithm for normal and pathological brain tissue segmentation on magnetic resonance brain image
    • Rajendran, A., Dhanasekaran, R.: Enhanced possibilistic fuzzy c-means algorithm for normal and pathological brain tissue segmentation on magnetic resonance brain image. Arab. J. Sci. Eng. 38(9), 2375–2388 (2013)
    • (2013) Arab. J. Sci. Eng , vol.38 , Issue.9 , pp. 2375-2388
    • Rajendran, A.1    Dhanasekaran, R.2
  • 33
    • 84880724801 scopus 로고    scopus 로고
    • Fracture characteristics of AISI D2 tool Steel at different tempering temperatures using acoustic emission and fuzzy c-means clustering
    • Fotouhi, M., Teymuri, S.C., Ahmadi, M., Pashmforoush, F.: Fracture characteristics of AISI D2 tool Steel at different tempering temperatures using acoustic emission and fuzzy c-means clustering. Arab. J. Sci. Eng. 38(8), 2205–2217 (2013)
    • (2013) Arab. J. Sci. Eng , vol.38 , Issue.8 , pp. 2205-2217
    • Fotouhi, M.1    Teymuri, S.C.2    Ahmadi, M.3    Pashmforoush, F.4
  • 34
    • 84880709695 scopus 로고    scopus 로고
    • Fuzzy c-means clustering-based jamming detection algorithm at base station
    • Jahanshahi, J.A., Ghorashi, S.A., Eslami, M.: Fuzzy c-means clustering-based jamming detection algorithm at base station. Arab. J. Sci. Eng. 38(8), 2125–2133 (2013)
    • (2013) Arab. J. Sci. Eng , vol.38 , Issue.8 , pp. 2125-2133
    • Jahanshahi, J.A.1    Ghorashi, S.A.2    Eslami, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.