메뉴 건너뛰기




Volumn 54, Issue , 2015, Pages 68-83

A local and online sifting process for the empirical mode decomposition and its application in aircraft damage detection

Author keywords

Aircraft damage detection; Empirical mode decomposition; Sifting process; Smoothing filters

Indexed keywords

AIRCRAFT; BENCHMARKING; DAMAGE DETECTION; SIGNAL PROCESSING;

EID: 84916201351     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2014.09.006     Document Type: Article
Times cited : (27)

References (30)
  • 3
    • 78149307306 scopus 로고    scopus 로고
    • Modeling and model reference adaptive control of aircraft with asymmetric damage
    • Y. Liu, G. Tao, and S.M. Joshi Modeling and model reference adaptive control of aircraft with asymmetric damage J. Guid. Control Dyn. 33 5 2010 1500 1517
    • (2010) J. Guid. Control Dyn. , vol.33 , Issue.5 , pp. 1500-1517
    • Liu, Y.1    Tao, G.2    Joshi, S.M.3
  • 5
    • 77958182155 scopus 로고    scopus 로고
    • Aerodynamic effects and modeling of damage to transport aircraft
    • Honolulu, Hawaii, USA
    • G.H. Shah, Aerodynamic effects and modeling of damage to transport aircraft, in: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Honolulu, Hawaii, USA, 2008.
    • (2008) AIAA Atmospheric Flight Mechanics Conference and Exhibit
    • Shah, G.H.1
  • 7
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Y. Lei, J. Lin, Z. He, and M.J. Zuo A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech. Syst. Signal Process. 35 2013 108 126
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 108-126
    • Lei, Y.1    Lin, J.2    He, Z.3    Zuo, M.J.4
  • 8
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • H. Jiang, C. Li, and H. Li An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis Mech. Syst. Signal Process. 36 2 2013 225 239
    • (2013) Mech. Syst. Signal Process. , vol.36 , Issue.2 , pp. 225-239
    • Jiang, H.1    Li, C.2    Li, H.3
  • 9
    • 78049487600 scopus 로고    scopus 로고
    • Detecting the sensitivity of structural damage based on the Hilbert-Huang transform approach
    • W.L. Chiang, D.J. Chiou, C.W. Chen, J.P. Tang, W.K. Hsu, and T.Y. Liu Detecting the sensitivity of structural damage based on the Hilbert-Huang transform approach Eng. Comput. 27 7 2010 799 818
    • (2010) Eng. Comput. , vol.27 , Issue.7 , pp. 799-818
    • Chiang, W.L.1    Chiou, D.J.2    Chen, C.W.3    Tang, J.P.4    Hsu, W.K.5    Liu, T.Y.6
  • 10
    • 33947309561 scopus 로고    scopus 로고
    • Hilbert-Huang transform-based vibration signal analysis for machine health monitoring
    • R. Yan, and R.X. Gao Hilbert-Huang transform-based vibration signal analysis for machine health monitoring IEEE Trans. Instrum. Meas. 55 6 2006 2320 2329
    • (2006) IEEE Trans. Instrum. Meas. , vol.55 , Issue.6 , pp. 2320-2329
    • Yan, R.1    Gao, R.X.2
  • 11
  • 15
    • 31044443577 scopus 로고    scopus 로고
    • Research on the intrinsic mode function (IMF) criterion in EMD method
    • C. Junsheng, Y. Dejie, and Y. Yu Research on the intrinsic mode function (IMF) criterion in EMD method Mech. Syst. Signal Process. 20 4 2006 817 824
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.4 , pp. 817-824
    • Junsheng, C.1    Dejie, Y.2    Yu, Y.3
  • 16
    • 80755128296 scopus 로고    scopus 로고
    • Boundary extension for Hilbert-Huang transform inspired by gray prediction model
    • Z. He, Y. Shen, and Q. Wang Boundary extension for Hilbert-Huang transform inspired by gray prediction model Signal Process. 92 3 2012 685 697
    • (2012) Signal Process. , vol.92 , Issue.3 , pp. 685-697
    • He, Z.1    Shen, Y.2    Wang, Q.3
  • 17
    • 34548047685 scopus 로고    scopus 로고
    • Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis
    • K. Qi, Z. He, and Y. Zi Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis Mech. Syst. Signal Process. 21 7 2007 2750 2760
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.7 , pp. 2750-2760
    • Qi, K.1    He, Z.2    Zi, Y.3
  • 18
    • 33645773008 scopus 로고    scopus 로고
    • A B-spline approach for empirical mode decompositions
    • Q. Chen, N. Huang, S. Riemenschneider, and Y. Xu A B-spline approach for empirical mode decompositions Adv. Comput. Math. 24 1-4 2006 171 195
    • (2006) Adv. Comput. Math. , vol.24 , Issue.14 , pp. 171-195
    • Chen, Q.1    Huang, N.2    Riemenschneider, S.3    Xu, Y.4
  • 19
    • 33747166791 scopus 로고    scopus 로고
    • A new envelope algorithm of Hilbert-Huang transform
    • S.R. Qin, and Y.M. Zhong A new envelope algorithm of Hilbert-Huang transform Mech. Syst. Signal Process. 20 8 2006 1941 1952
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.8 , pp. 1941-1952
    • Qin, S.R.1    Zhong, Y.M.2
  • 20
    • 42349104644 scopus 로고    scopus 로고
    • Empirical mode decomposition using rational splines: An application to rainfall time series
    • G.G.S. Pegram, M.C. Peel, and T.A. McMahon Empirical mode decomposition using rational splines: an application to rainfall time series Proc. R. Soc. A: Math. Phys. Eng. Sci. 464 2094 2008 1483 1501
    • (2008) Proc. R. Soc. A: Math. Phys. Eng. Sci. , vol.464 , Issue.2094 , pp. 1483-1501
    • Pegram, G.G.S.1    Peel, M.C.2    McMahon, T.A.3
  • 22
    • 27844487555 scopus 로고    scopus 로고
    • Empirical mode decomposition: An analytical approach for sifting process
    • E. Deléchelle, J. Lemoine, and O. Niang Empirical mode decomposition: an analytical approach for sifting process IEEE Signal Process. Lett. 12 11 2005 764 767
    • (2005) IEEE Signal Process. Lett. , vol.12 , Issue.11 , pp. 764-767
    • Deléchelle, E.1    Lemoine, J.2    Niang, O.3
  • 23
    • 36749090569 scopus 로고    scopus 로고
    • A new formulation for empirical mode decomposition based on constrained optimization
    • S. Meignen, and V. Perrier A new formulation for empirical mode decomposition based on constrained optimization IEEE Signal Process. Lett. 14 12 2007 932 935
    • (2007) IEEE Signal Process. Lett. , vol.14 , Issue.12 , pp. 932-935
    • Meignen, S.1    Perrier, V.2
  • 24
    • 37749039711 scopus 로고    scopus 로고
    • Investigation and performance enhancement of the empirical mode decomposition method based on a heuristic search optimization approach
    • Y. Kopsinis, and S. McLaughlin Investigation and performance enhancement of the empirical mode decomposition method based on a heuristic search optimization approach IEEE Trans. Signal Process. 56 1 2008 1 13
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.1 , pp. 1-13
    • Kopsinis, Y.1    McLaughlin, S.2
  • 26
    • 84892798627 scopus 로고    scopus 로고
    • Empirical mode decomposition: Real-time implementation and applications
    • A. Eftekhar, C. Toumazou, and E.M. Drakakis Empirical mode decomposition: real-time implementation and applications J. Signal Process. Syst. 73 1 2013 43 58
    • (2013) J. Signal Process. Syst. , vol.73 , Issue.1 , pp. 43-58
    • Eftekhar, A.1    Toumazou, C.2    Drakakis, E.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.