메뉴 건너뛰기




Volumn 9, Issue 12, 2014, Pages

Information content-based gene ontology functional similarity measures: Which one to use for a given biological data type?

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGY; GENE EXPRESSION; GENE ONTOLOGY; GENETIC DATABASE; HUMAN; INFORMATION; INFORMATION CONTENT; PROTEIN ANALYSIS; PROTEIN DOMAIN; PROTEIN FUNCTION; PROTEIN PROTEIN INTERACTION; SEMANTICS; SEQUENCE HOMOLOGY; STATISTICAL ANALYSIS; AREA UNDER THE CURVE; CHEMISTRY; CLUSTER ANALYSIS; FACTUAL DATABASE; GENETICS; METABOLISM; MOLECULAR GENETICS; PROTEIN DATABASE; RECEIVER OPERATING CHARACTERISTIC;

EID: 84916199873     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0113859     Document Type: Article
Times cited : (33)

References (34)
  • 1
    • 75849158230 scopus 로고    scopus 로고
    • The gene ontology in 2010: Extensions and refinements
    • GO-Consortium (2009) The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Research 38: D331-D335.
    • (2009) Nucleic Acids Research , vol.38 , pp. D331-D335
    • GO-Consortium.1
  • 2
    • 84884505519 scopus 로고    scopus 로고
    • DaGO-Fun: Tool for Gene Ontology-based functional analysis using term information content measures
    • Mazandu GK, Mulder NJ (2013) DaGO-Fun: Tool for Gene Ontology-based functional analysis using term information content measures. BMC Bioinformatics 14: 284.
    • (2013) BMC Bioinformatics , vol.14 , pp. 284
    • Mazandu, G.K.1    Mulder, N.J.2
  • 3
    • 75849153303 scopus 로고    scopus 로고
    • The universal protein resource (uniprot) in 2010
    • UniProt-Consortium (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Research 38: D142-D148.
    • (2010) Nucleic Acids Research , vol.38 , pp. D142-D148
    • UniProt-Consortium.1
  • 5
    • 58149200954 scopus 로고    scopus 로고
    • Database resources of the national center for biotechnology information
    • Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 37(Database issue): D5-D15.
    • (2009) Nucleic Acids Research , vol.37 , Issue.DATABASE ISSUE , pp. D5-D15
    • Sayers, E.W.1    Barrett, T.2    Benson, D.A.3    Bryant, S.H.4    Canese, K.5
  • 7
    • 84860362791 scopus 로고    scopus 로고
    • Using the underlying biological organization of the Mycobacterium tuberculosis functional network for protein function prediction
    • Mazandu GK, Mulder NJ (2012) Using the underlying biological organization of the Mycobacterium tuberculosis functional network for protein function prediction. Infection, Genetics and Evolution 12(5): 922-932.
    • (2012) Infection, Genetics and Evolution , vol.12 , Issue.5 , pp. 922-932
    • Mazandu, G.K.1    Mulder, N.J.2
  • 8
    • 84884726933 scopus 로고    scopus 로고
    • Information content-based Gene Ontology semantic similarity approaches: Toward a unified framework theory
    • 2013: Ariticle ID 292063
    • Mazandu GK, Mulder NJ (2013) Information content-based Gene Ontology semantic similarity approaches: Toward a unified framework theory. BioMed Research International 2013: Ariticle ID 292063, 11 pages.
    • (2013) BioMed Research International
    • Mazandu, G.K.1    Mulder, N.J.2
  • 9
    • 84862297314 scopus 로고    scopus 로고
    • A topology-based metric for measuring term similarity in the Gene Ontology
    • Ariticle ID 975783
    • Mazandu GK, Mulder NJ (2012) A topology-based metric for measuring term similarity in the Gene Ontology. Adv Bioinformatics 2012: Ariticle ID 975783, 17 pages.
    • (2012) Adv Bioinformatics , vol.2012
    • Mazandu, G.K.1    Mulder, N.J.2
  • 10
    • 84887721634 scopus 로고    scopus 로고
    • Semantic similarity analysis of protein data: Assessment with biological features and issues
    • Guzzi PH, Mina M, Guerra C, Cannataro M (2011) Semantic similarity analysis of protein data: assessment with biological features and issues. Brief Bioinform: 1-17.
    • (2011) Brief Bioinform , pp. 1-17
    • Guzzi, P.H.1    Mina, M.2    Guerra, C.3    Cannataro, M.4
  • 12
    • 49949096013 scopus 로고    scopus 로고
    • Gene Ontology term overlap as a measure of gene functional similarity
    • Mistry M, Pavlidis P (2008) Gene Ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics 9: 327.
    • (2008) BMC Bioinformatics , vol.9 , pp. 327
    • Mistry, M.1    Pavlidis, P.2
  • 13
    • 0002016474 scopus 로고    scopus 로고
    • Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language
    • Resnik P (1999) Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11: 95-130.
    • (1999) Journal of Artificial Intelligence Research , vol.11 , pp. 95-130
    • Resnik, P.1
  • 16
    • 0037480738 scopus 로고    scopus 로고
    • Investigating semantic similarity measures across the Gene Ontology: The relationship between sequence and annotation
    • Lord PW, Stevens PW, Brass A, Goble CA (2003) Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19(10): 1275-1283.
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1275-1283
    • Lord, P.W.1    Stevens, P.W.2    Brass, A.3    Goble, C.A.4
  • 17
    • 33847103869 scopus 로고    scopus 로고
    • Measuring semantic similarity between Gene Ontology terms
    • Couto F, Silva M, Coutinho P (2007) Measuring semantic similarity between Gene Ontology terms. Data Knowledge Eng 61(1): 137-152.
    • (2007) Data Knowledge Eng , vol.61 , Issue.1 , pp. 137-152
    • Couto, F.1    Silva, M.2    Coutinho, P.3
  • 20
    • 84861118865 scopus 로고    scopus 로고
    • Improving GO semantic similarity measures by exploring the ontology beneath the terms and modelling uncertainty
    • Yang H, Nepusz T, Paccanaro A (2012) Improving GO semantic similarity measures by exploring the ontology beneath the terms and modelling uncertainty. Bioinformatics 28(10): 1383-1387.
    • (2012) Bioinformatics , vol.28 , Issue.10 , pp. 1383-1387
    • Yang, H.1    Nepusz, T.2    Paccanaro, A.3
  • 24
    • 34447294237 scopus 로고    scopus 로고
    • A new method to measure the semantic similarity of GO terms
    • Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF (2007) A new method to measure the semantic similarity of GO terms. Bioinformatics 23(10): 1274-1281.
    • (2007) Bioinformatics , vol.23 , Issue.10 , pp. 1274-1281
    • Wang, J.Z.1    Du, Z.2    Payattakool, R.3    Yu, P.S.4    Chen, C.F.5
  • 26
    • 85015920753 scopus 로고    scopus 로고
    • An intrinsic information content metric for semantic similarity in wordnet
    • Seco N, Veale T, Hayes J (2004) An intrinsic information content metric for semantic similarity in wordnet. In: ECAI-04. pp. 1089-1090.
    • (2004) ECAI-04 , pp. 1089-1090
    • Seco, N.1    Veale, T.2    Hayes, J.3
  • 27
    • 84878558653 scopus 로고    scopus 로고
    • Improving the measurement of semantic similarity between gene ontology terms and gene products: Insights from an edge-and ic-based hybrid method
    • Wu X, Pang E, Lin K, Pei Z (2013) Improving the Measurement of Semantic Similarity between Gene Ontology Terms and Gene Products: Insights from an Edge-and IC-Based Hybrid Method. PLoS ONE 8(5): e66745.
    • (2013) PLoS ONE , vol.8 , Issue.5 , pp. e66745
    • Wu, X.1    Pang, E.2    Lin, K.3    Pei, Z.4
  • 28
    • 84877925999 scopus 로고    scopus 로고
    • A novel insight into Gene Ontology semantic similarity
    • Xu Y, Guo M, Shi W, Liu X, Wang C (2013) A novel insight into Gene Ontology semantic similarity. Genomics 101: 368-375.
    • (2013) Genomics , vol.101 , pp. 368-375
    • Xu, Y.1    Guo, M.2    Shi, W.3    Liu, X.4    Wang, C.5
  • 29
    • 84891725921 scopus 로고    scopus 로고
    • A shortest-path graph kernel for estimating gene product semantic similarity
    • Alvarez MA, Qi X, Yan C (2011) A shortest-path graph kernel for estimating gene product semantic similarity. J Biomed Semant 2: 3.
    • (2011) J Biomed Semant , vol.2 , pp. 3
    • Alvarez, M.A.1    Qi, X.2    Yan, C.3
  • 31
    • 64349094767 scopus 로고    scopus 로고
    • Tissue specificity and the human protein interaction network
    • Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction network. Molecular Systems Biology 5: 260.
    • (2009) Molecular Systems Biology , vol.5 , pp. 260
    • Bossi, A.1    Lehner, B.2
  • 32
    • 78650194201 scopus 로고    scopus 로고
    • Contribution of microarray data to the advancement of knowledge on the Mycobacterium tuberculosis interactome: Use of the random partial least squares approach
    • Mazandu GK, Opap K, Mulder NJ (2011) Contribution of microarray data to the advancement of knowledge on the Mycobacterium tuberculosis interactome: Use of the random partial least squares approach. Infection, Genetics and Evolution 11(4): 725-733.
    • (2011) Infection, Genetics and Evolution , vol.11 , Issue.4 , pp. 725-733
    • Mazandu, G.K.1    Opap, K.2    Mulder, N.J.3
  • 34
    • 75149140809 scopus 로고    scopus 로고
    • Identifying and evaluating community structure in complex networks
    • Steinhaeuser K, Chawla NV (2010) Identifying and evaluating community structure in complex networks. Pattern Recognition Letters 31: 413-421.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 413-421
    • Steinhaeuser, K.1    Chawla, N.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.