메뉴 건너뛰기




Volumn 19, Issue PB, 2014, Pages 329-333

Plant mitochondria: Source and target for nitric oxide

Author keywords

Aconitase; Anoxia; Mitochondrial electron transport; Nitric oxide; Nitrosylation

Indexed keywords

MULTIENZYME COMPLEX; NITRIC OXIDE; NITRITE; VEGETABLE PROTEIN;

EID: 84914101346     PISSN: 15677249     EISSN: 18728278     Source Type: Journal    
DOI: 10.1016/j.mito.2014.02.003     Document Type: Article
Times cited : (69)

References (77)
  • 2
    • 79751494167 scopus 로고    scopus 로고
    • The language of nitric oxide signalling
    • Baudouin E. The language of nitric oxide signalling. Plant Biol. 2011, 13:233-242.
    • (2011) Plant Biol. , vol.13 , pp. 233-242
    • Baudouin, E.1
  • 6
    • 34249825521 scopus 로고    scopus 로고
    • Nitric oxide and mitochondria
    • Brown G.C. Nitric oxide and mitochondria. Front. Biosci. 2007, 12:1024-1033.
    • (2007) Front. Biosci. , vol.12 , pp. 1024-1033
    • Brown, G.C.1
  • 7
    • 3543008400 scopus 로고    scopus 로고
    • Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols
    • Brown G.C., Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta 2004, 1658:44-49.
    • (2004) Biochim. Biophys. Acta , vol.1658 , pp. 44-49
    • Brown, G.C.1    Borutaite, V.2
  • 11
    • 28044464985 scopus 로고
    • Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative diseases
    • Cleeter M.W.J., Cooper J.M., Darley-Usmar V.M., Moncada S., Schapira A.H.V. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative diseases. FEBS Lett. 1994, 345:50-54.
    • (1994) FEBS Lett. , vol.345 , pp. 50-54
    • Cleeter, M.W.J.1    Cooper, J.M.2    Darley-Usmar, V.M.3    Moncada, S.4    Schapira, A.H.V.5
  • 13
    • 0031559913 scopus 로고    scopus 로고
    • Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidized copper: a general mechanism for the interaction of copper proteins with nitric oxide?
    • Cooper C.E., Torres J., Sharpe M.A., Wilson M.T. Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidized copper: a general mechanism for the interaction of copper proteins with nitric oxide?. FEBS Lett. 1997, 414:281-284.
    • (1997) FEBS Lett. , vol.414 , pp. 281-284
    • Cooper, C.E.1    Torres, J.2    Sharpe, M.A.3    Wilson, M.T.4
  • 14
    • 69949091242 scopus 로고    scopus 로고
    • Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants
    • Corpas F.J., Palma J.M., del Río L.A., Barroso J.B. Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants. New Phytol. 2009, 184:9-14.
    • (2009) New Phytol. , vol.184 , pp. 9-14
    • Corpas, F.J.1    Palma, J.M.2    del Río, L.A.3    Barroso, J.B.4
  • 15
    • 0027205318 scopus 로고
    • Lack of aconitase in glyoxysomes and peroxisomes
    • Courtois-Verniquet F., Douce R. Lack of aconitase in glyoxysomes and peroxisomes. Biochem. J. 1993, 294:103-107.
    • (1993) Biochem. J. , vol.294 , pp. 103-107
    • Courtois-Verniquet, F.1    Douce, R.2
  • 16
    • 84861481905 scopus 로고    scopus 로고
    • Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide
    • Cvetkovska M., Vanlerberghe G.C. Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol. 2012, 195:32-39.
    • (2012) New Phytol. , vol.195 , pp. 32-39
    • Cvetkovska, M.1    Vanlerberghe, G.C.2
  • 17
    • 84873095418 scopus 로고    scopus 로고
    • Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species
    • Cvetkovska M., Vanlerberghe G.C. Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ. 2013, 36:721-732.
    • (2013) Plant Cell Environ. , vol.36 , pp. 721-732
    • Cvetkovska, M.1    Vanlerberghe, G.C.2
  • 18
    • 43049095110 scopus 로고    scopus 로고
    • Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases
    • de Oliveira H.C., Wulff A., Saviani E.E., Salgado I. Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases. Biochim. Biophys. Acta 2008, 1777:470-476.
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 470-476
    • de Oliveira, H.C.1    Wulff, A.2    Saviani, E.E.3    Salgado, I.4
  • 19
    • 80052041778 scopus 로고    scopus 로고
    • Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis
    • Degu A., Hatew B., Nunes-Nesi A., Shlizerman L., Zur N., Katz E., Fernie A.R., Blumwald E., Sadka A. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta 2011, 234:501-513.
    • (2011) Planta , vol.234 , pp. 501-513
    • Degu, A.1    Hatew, B.2    Nunes-Nesi, A.3    Shlizerman, L.4    Zur, N.5    Katz, E.6    Fernie, A.R.7    Blumwald, E.8    Sadka, A.9
  • 20
    • 78751630784 scopus 로고    scopus 로고
    • Peroxisomes as a cellular source of reactive nitrogen species signal molecules
    • del Río L.A. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch. Biochem. Biophys. 2011, 506:1-11.
    • (2011) Arch. Biochem. Biophys. , vol.506 , pp. 1-11
    • del Río, L.A.1
  • 21
    • 0032490943 scopus 로고    scopus 로고
    • Nitric oxide functions as a signal in plant disease resistance
    • Delledonne M., Xia Y., Dixon R.A., Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature 1998, 394:585-588.
    • (1998) Nature , vol.394 , pp. 585-588
    • Delledonne, M.1    Xia, Y.2    Dixon, R.A.3    Lamb, C.4
  • 22
    • 0030950713 scopus 로고    scopus 로고
    • Interplay between NO and [Fe-S] clusters: relevance to biological systems
    • Drapier J.C. Interplay between NO and [Fe-S] clusters: relevance to biological systems. Methods 1997, 11:319-329.
    • (1997) Methods , vol.11 , pp. 319-329
    • Drapier, J.C.1
  • 23
    • 0032544005 scopus 로고    scopus 로고
    • Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose
    • Durner J., Wendehenne D., Klessig D.F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:10328-10333.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 10328-10333
    • Durner, J.1    Wendehenne, D.2    Klessig, D.F.3
  • 25
    • 2942558370 scopus 로고    scopus 로고
    • New insights into protein S-nitrosylation: mitochondria as a model system
    • Foster M.W., Stamler J.S. New insights into protein S-nitrosylation: mitochondria as a model system. J. Biol. Chem. 2004, 279:25891-25897.
    • (2004) J. Biol. Chem. , vol.279 , pp. 25891-25897
    • Foster, M.W.1    Stamler, J.S.2
  • 26
    • 80052338563 scopus 로고    scopus 로고
    • The hunt for plant nitric oxide synthase (NOS): is one really needed?
    • Fröhlich A., Durner J. The hunt for plant nitric oxide synthase (NOS): is one really needed?. Plant Sci. 2011, 181:401-404.
    • (2011) Plant Sci. , vol.181 , pp. 401-404
    • Fröhlich, A.1    Durner, J.2
  • 27
    • 0026045587 scopus 로고
    • Superoxide sensitivity of the Escherichia coli aconitase
    • Gardner P.R., Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 1991, 266:19328-19333.
    • (1991) J. Biol. Chem. , vol.266 , pp. 19328-19333
    • Gardner, P.R.1    Fridovich, I.2
  • 28
    • 79954585869 scopus 로고    scopus 로고
    • Detection of peroxynitrite accumulation in Arabidopsis thaliana during the hypersensitive defense response
    • Gaupels F., Spiazzi-Vandelle E., Yang D., Delledonne M. Detection of peroxynitrite accumulation in Arabidopsis thaliana during the hypersensitive defense response. Nitric Oxide 2011, 25:222-228.
    • (2011) Nitric Oxide , vol.25 , pp. 222-228
    • Gaupels, F.1    Spiazzi-Vandelle, E.2    Yang, D.3    Delledonne, M.4
  • 29
    • 30644480616 scopus 로고    scopus 로고
    • Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence
    • Guo F.Q., Crawford N.M. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 2005, 17:3436-3450.
    • (2005) Plant Cell , vol.17 , pp. 3436-3450
    • Guo, F.Q.1    Crawford, N.M.2
  • 30
    • 78650858812 scopus 로고    scopus 로고
    • Protein S-nitrosylation in plants: photorespiratory metabolism and NO signaling
    • Gupta K.J. Protein S-nitrosylation in plants: photorespiratory metabolism and NO signaling. Science Signaling 4, jc1 2011.
    • (2011) Science Signaling 4, jc1
    • Gupta, K.J.1
  • 31
    • 79957962052 scopus 로고    scopus 로고
    • The anoxic plant mitochondrion as a nitrite: NO reductase
    • Gupta K.J., Igamberdiev A.U. The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 2011, 11:537-543.
    • (2011) Mitochondrion , vol.11 , pp. 537-543
    • Gupta, K.J.1    Igamberdiev, A.U.2
  • 32
    • 24744437064 scopus 로고    scopus 로고
    • In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ
    • Gupta K.J., Stoimenova M., Kaiser W.M. In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J. Exp. Bot. 2005, 56:2601-2609.
    • (2005) J. Exp. Bot. , vol.56 , pp. 2601-2609
    • Gupta, K.J.1    Stoimenova, M.2    Kaiser, W.M.3
  • 34
    • 84857982943 scopus 로고    scopus 로고
    • Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids
    • Gupta K.J., Shah J.K., Brotman Y., Jahnke K., Willmitzer L., Kaiser W.M., Bauwe H., Igamberdiev A.U. Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J. Exp. Bot. 2012, 63:1773-1784.
    • (2012) J. Exp. Bot. , vol.63 , pp. 1773-1784
    • Gupta, K.J.1    Shah, J.K.2    Brotman, Y.3    Jahnke, K.4    Willmitzer, L.5    Kaiser, W.M.6    Bauwe, H.7    Igamberdiev, A.U.8
  • 35
    • 84896775143 scopus 로고    scopus 로고
    • Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots
    • Gupta K.J., Mur L., Brotman Y. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Mol. Plant Microbe Interact 2014, 10.1094/MPMI-06-13-0160-R.
    • (2014) Mol. Plant Microbe Interact
    • Gupta, K.J.1    Mur, L.2    Brotman, Y.3
  • 36
    • 84898715524 scopus 로고    scopus 로고
    • Nitric oxide is required for homeostasis of oxygen and reactive oxygen species in barley roots under aerobic conditions
    • Gupta K.J., Hebelstrup K.H., Kruger N.J., Ratcliffe R.G. Nitric oxide is required for homeostasis of oxygen and reactive oxygen species in barley roots under aerobic conditions. Mol. Plant 2014, 10.1093/mp/sst167.
    • (2014) Mol. Plant
    • Gupta, K.J.1    Hebelstrup, K.H.2    Kruger, N.J.3    Ratcliffe, R.G.4
  • 37
    • 0348134741 scopus 로고    scopus 로고
    • Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α
    • Hagen T., Taylor C.T., Lam F., Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 2003, 302:1975-1978.
    • (2003) Science , vol.302 , pp. 1975-1978
    • Hagen, T.1    Taylor, C.T.2    Lam, F.3    Moncada, S.4
  • 39
    • 0036944847 scopus 로고    scopus 로고
    • Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells
    • Huang X., von Rad U., Durner J. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 2002, 215:914-923.
    • (2002) Planta , vol.215 , pp. 914-923
    • Huang, X.1    von Rad, U.2    Durner, J.3
  • 40
    • 33645218773 scopus 로고    scopus 로고
    • Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin
    • Igamberdiev A.U., Bykova N.V., Hill R.D. Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta 2006, 223:1033-1040.
    • (2006) Planta , vol.223 , pp. 1033-1040
    • Igamberdiev, A.U.1    Bykova, N.V.2    Hill, R.D.3
  • 41
    • 33751110470 scopus 로고    scopus 로고
    • Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins
    • Jasid S., Simontacchi M., Bartoli C.G., Puntarulo S. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol. 2006, 142:1246-1255.
    • (2006) Plant Physiol. , vol.142 , pp. 1246-1255
    • Jasid, S.1    Simontacchi, M.2    Bartoli, C.G.3    Puntarulo, S.4
  • 42
    • 0033035767 scopus 로고    scopus 로고
    • Nitrite reductase activity is a novel function of mammalian mitochondria
    • Kozlov A.V., Staniek K., Nohl H. Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett. 1999, 454:127-130.
    • (1999) FEBS Lett. , vol.454 , pp. 127-130
    • Kozlov, A.V.1    Staniek, K.2    Nohl, H.3
  • 43
    • 81155138846 scopus 로고    scopus 로고
    • Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach
    • Li J., Sun J., Yang Y., Guo S., Glick B.R. Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach. Plant Physiol. Biochem. 2012, 51:74-80.
    • (2012) Plant Physiol. Biochem. , vol.51 , pp. 74-80
    • Li, J.1    Sun, J.2    Yang, Y.3    Guo, S.4    Glick, B.R.5
  • 44
    • 79959987745 scopus 로고    scopus 로고
    • In vivo protein tyrosine nitration in Arabidopsis thaliana
    • Lozano-Juste J., Colom-Moreno R., León J. In vivo protein tyrosine nitration in Arabidopsis thaliana. J. Exp. Bot. 2011, 62:3501-3517.
    • (2011) J. Exp. Bot. , vol.62 , pp. 3501-3517
    • Lozano-Juste, J.1    Colom-Moreno, R.2    León, J.3
  • 45
    • 0033529335 scopus 로고    scopus 로고
    • The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells
    • Maxwell D.P., Wang Y., McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:8271-8276.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 8271-8276
    • Maxwell, D.P.1    Wang, Y.2    McIntosh, L.3
  • 46
    • 0030566801 scopus 로고    scopus 로고
    • Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria
    • Millar A.H., Day D.A. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett. 1996, 398:155-158.
    • (1996) FEBS Lett. , vol.398 , pp. 155-158
    • Millar, A.H.1    Day, D.A.2
  • 47
    • 21244453184 scopus 로고    scopus 로고
    • Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae
    • Modolo L.V., Augusto O., Almeida I.M.G., Magalhaes J.R., Salgado I. Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett. 2005, 579:3814-3820.
    • (2005) FEBS Lett. , vol.579 , pp. 3814-3820
    • Modolo, L.V.1    Augusto, O.2    Almeida, I.M.G.3    Magalhaes, J.R.4    Salgado, I.5
  • 48
    • 57749108288 scopus 로고    scopus 로고
    • AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase
    • Moreau M., Lee G.I., Wang Y., Crane B.R., Klessig D.F. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J. Biol. Chem. 2008, 283:32957-32967.
    • (2008) J. Biol. Chem. , vol.283 , pp. 32957-32967
    • Moreau, M.1    Lee, G.I.2    Wang, Y.3    Crane, B.R.4    Klessig, D.F.5
  • 49
    • 84896448607 scopus 로고    scopus 로고
    • Striking a balance: does nitrate uptake and metabolism regulate both NO generation and scavenging?
    • Mur L.A., Hebelstrup K.H., Gupta K.J. Striking a balance: does nitrate uptake and metabolism regulate both NO generation and scavenging?. Front. Plant Sci. 2013, 4:288.
    • (2013) Front. Plant Sci. , vol.4 , pp. 288
    • Mur, L.A.1    Hebelstrup, K.H.2    Gupta, K.J.3
  • 52
    • 77949534774 scopus 로고    scopus 로고
    • Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation
    • Palmieri M.C., Lindermayr C., Bauwe H., Steinhauser C., Durner J. Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation. Plant Physiol. 2010, 152:1514-1528.
    • (2010) Plant Physiol. , vol.152 , pp. 1514-1528
    • Palmieri, M.C.1    Lindermayr, C.2    Bauwe, H.3    Steinhauser, C.4    Durner, J.5
  • 53
    • 0037134524 scopus 로고    scopus 로고
    • The catabolic fate of nitric oxide: the nitric oxide oxidase and peroxynitrite reductase activities of cytochrome oxidase
    • Pearce L.L., Kanai A.J., Birder L.A., Pitt B.R., Peterson J. The catabolic fate of nitric oxide: the nitric oxide oxidase and peroxynitrite reductase activities of cytochrome oxidase. J. Biol. Chem. 2002, 277:13556-13562.
    • (2002) J. Biol. Chem. , vol.277 , pp. 13556-13562
    • Pearce, L.L.1    Kanai, A.J.2    Birder, L.A.3    Pitt, B.R.4    Peterson, J.5
  • 54
    • 14844289535 scopus 로고    scopus 로고
    • Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport
    • Planchet E., Gupta K.J., Sonoda M., Kaiser W.M. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J. 2005, 41:732-743.
    • (2005) Plant J. , vol.41 , pp. 732-743
    • Planchet, E.1    Gupta, K.J.2    Sonoda, M.3    Kaiser, W.M.4
  • 55
    • 84989699723 scopus 로고
    • Does the alternative pathway ameliorate chilling injury in sensitive plant tissues?
    • Purvis A.C., Shewfelt R.L. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues?. Physiol. Plant. 1993, 88:712-718.
    • (1993) Physiol. Plant. , vol.88 , pp. 712-718
    • Purvis, A.C.1    Shewfelt, R.L.2
  • 56
    • 84884169659 scopus 로고    scopus 로고
    • Peroxynitrite, a stealthy biological oxidant
    • Radi R. Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 2013, 288:26464-26472.
    • (2013) J. Biol. Chem. , vol.288 , pp. 26464-26472
    • Radi, R.1
  • 57
    • 0036244508 scopus 로고    scopus 로고
    • Nitric oxide and peroxynitrite interactions with mitochondria
    • Radi R., Cassina A., Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol. Chem. 2005, 383:401-409.
    • (2005) Biol. Chem. , vol.383 , pp. 401-409
    • Radi, R.1    Cassina, A.2    Hodara, R.3
  • 58
    • 0037008223 scopus 로고    scopus 로고
    • Transgenic plant cells lacking mitochondrial oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death
    • Robson C.A., Vanlerberghe G.C. Transgenic plant cells lacking mitochondrial oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol. 2002, 129:1908-1920.
    • (2002) Plant Physiol. , vol.129 , pp. 1908-1920
    • Robson, C.A.1    Vanlerberghe, G.C.2
  • 60
    • 66249114356 scopus 로고    scopus 로고
    • Plant cells oxidize hydroxylamines to NO
    • Rümer S., Gupta K.J., Kaiser W.M. Plant cells oxidize hydroxylamines to NO. J. Exp. Bot. 2009, 60:2065-2072.
    • (2009) J. Exp. Bot. , vol.60 , pp. 2065-2072
    • Rümer, S.1    Gupta, K.J.2    Kaiser, W.M.3
  • 61
    • 80051789882 scopus 로고    scopus 로고
    • Molecular and biochemical characterization of nitric oxide synthase isoforms and their intracellular distribution in human peripheral blood mononuclear cells
    • Saluja R., Jyoti A., Chatterjee M., Habib S., Verma A., Mitra K., Barthwal M.K., Bajpai V.K., Dikshit M. Molecular and biochemical characterization of nitric oxide synthase isoforms and their intracellular distribution in human peripheral blood mononuclear cells. Biochim. Biophys. Acta 2011, 1813:1700-1707.
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1700-1707
    • Saluja, R.1    Jyoti, A.2    Chatterjee, M.3    Habib, S.4    Verma, A.5    Mitra, K.6    Barthwal, M.K.7    Bajpai, V.K.8    Dikshit, M.9
  • 62
    • 0038381423 scopus 로고    scopus 로고
    • Nitrosylation of cytochrome c during apoptosis
    • Schonhoff C.M., Gaston B., Mannick J.B. Nitrosylation of cytochrome c during apoptosis. J. Biol. Chem. 2003, 278:18265-18270.
    • (2003) J. Biol. Chem. , vol.278 , pp. 18265-18270
    • Schonhoff, C.M.1    Gaston, B.2    Mannick, J.B.3
  • 63
    • 84889565771 scopus 로고    scopus 로고
    • RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea
    • Sehrawat A., Abat J.K., Deswal R. RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea. Front. Plant Sci. 2013, 4:342.
    • (2013) Front. Plant Sci. , vol.4 , pp. 342
    • Sehrawat, A.1    Abat, J.K.2    Deswal, R.3
  • 64
    • 84871658933 scopus 로고    scopus 로고
    • Respiratory complex I deficiency results in low nitric oxide levels, induction of hemoglobin and upregulation of fermentation pathways
    • Shah J.K., Cochrane D.W., De Paepe R., Igamberdiev A.U. Respiratory complex I deficiency results in low nitric oxide levels, induction of hemoglobin and upregulation of fermentation pathways. Plant Physiol. Biochem. 2013, 63:185-190.
    • (2013) Plant Physiol. Biochem. , vol.63 , pp. 185-190
    • Shah, J.K.1    Cochrane, D.W.2    De Paepe, R.3    Igamberdiev, A.U.4
  • 65
    • 39049084257 scopus 로고    scopus 로고
    • Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase
    • Shi F.M., Li Y.Z. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. BMB Rep. 2008, 41:79-85.
    • (2008) BMB Rep. , vol.41 , pp. 79-85
    • Shi, F.M.1    Li, Y.Z.2
  • 66
    • 84870946958 scopus 로고    scopus 로고
    • Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner
    • Simonin V., Galina A. Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner. Biochem. J. 2013, 449:263-273.
    • (2013) Biochem. J. , vol.449 , pp. 263-273
    • Simonin, V.1    Galina, A.2
  • 67
    • 61349183750 scopus 로고    scopus 로고
    • Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum
    • Srivastava N., Gonugunta V.K., Puli M.R., Raghavendra A.S. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 2009, 229:757-765.
    • (2009) Planta , vol.229 , pp. 757-765
    • Srivastava, N.1    Gonugunta, V.K.2    Puli, M.R.3    Raghavendra, A.S.4
  • 68
    • 0027104253 scopus 로고
    • Biochemistry of nitric oxide and its redox-activated forms
    • Stamler J.S., Singel D.J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992, 258:1898-1902.
    • (1992) Science , vol.258 , pp. 1898-1902
    • Stamler, J.S.1    Singel, D.J.2    Loscalzo, J.3
  • 69
    • 0035037361 scopus 로고    scopus 로고
    • A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite
    • Stöhr C., Strube F., Marx G., Ullrich W.R., Rockel P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 2001, 212:835-841.
    • (2001) Planta , vol.212 , pp. 835-841
    • Stöhr, C.1    Strube, F.2    Marx, G.3    Ullrich, W.R.4    Rockel, P.5
  • 70
    • 34249990700 scopus 로고    scopus 로고
    • Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria
    • Stoimenova M., Igamberdiev A.U., Gupta K.J., Hill R.D. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 2007, 226:465-474.
    • (2007) Planta , vol.226 , pp. 465-474
    • Stoimenova, M.1    Igamberdiev, A.U.2    Gupta, K.J.3    Hill, R.D.4
  • 71
    • 4944229678 scopus 로고    scopus 로고
    • Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana
    • Tischner R., Planchet E., Kaiser W.M. Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett. 2004, 576:151-155.
    • (2004) FEBS Lett. , vol.576 , pp. 151-155
    • Tischner, R.1    Planchet, E.2    Kaiser, W.M.3
  • 72
    • 0037008215 scopus 로고    scopus 로고
    • Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death
    • Vanlerberghe G.C., Robson C.A., Yip J.Y.H. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. Plant Physiol. 2002, 129:1829-1842.
    • (2002) Plant Physiol. , vol.129 , pp. 1829-1842
    • Vanlerberghe, G.C.1    Robson, C.A.2    Yip, J.Y.H.3
  • 73
    • 3042806779 scopus 로고    scopus 로고
    • Nitric oxide: a new player in plant signalling and defence responses
    • Wendehenne D., Durner J., Klessig D.F. Nitric oxide: a new player in plant signalling and defence responses. Curr. Opin. Plant Biol. 2004, 7:449-455.
    • (2004) Curr. Opin. Plant Biol. , vol.7 , pp. 449-455
    • Wendehenne, D.1    Durner, J.2    Klessig, D.F.3
  • 74
    • 68149162554 scopus 로고    scopus 로고
    • Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels
    • Wulff A., Oliveira H.C., Saviani E.E., Salgado I. Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide 2009, 21:132-139.
    • (2009) Nitric Oxide , vol.21 , pp. 132-139
    • Wulff, A.1    Oliveira, H.C.2    Saviani, E.E.3    Salgado, I.4
  • 75
    • 33745396481 scopus 로고    scopus 로고
    • Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana
    • Yamamoto-Katou A., Katou S., Yoshioka H., Doke N., Kawakita K. Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol. 2006, 47:726-735.
    • (2006) Plant Cell Physiol. , vol.47 , pp. 726-735
    • Yamamoto-Katou, A.1    Katou, S.2    Yoshioka, H.3    Doke, N.4    Kawakita, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.