메뉴 건너뛰기




Volumn 972, Issue , 2012, Pages 33-44

Mining concepts from incomplete datasets utilizing matrix factorization

Author keywords

Clustering; Formal Concept Analysis; Matrix factorization; Missing values completion

Indexed keywords

ARTIFICIAL INTELLIGENCE; FACTORIZATION; INFORMATION ANALYSIS; LEARNING SYSTEMS; MATRIX ALGEBRA; STOCHASTIC SYSTEMS;

EID: 84913582978     PISSN: 16130073     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (19)
  • 2
    • 33745552061 scopus 로고    scopus 로고
    • Treating incomplete knowledge in formal concept analysis
    • B. Ganter, G. Stumme, R. Wille (Eds.): Formal Concept Analysis: State of the Art, Springer, Heidelberg
    • P. Burmeister, R. Holzer: Treating Incomplete Knowledge in Formal Concept Analysis. In: B. Ganter, G. Stumme, R. Wille (Eds.): Formal Concept Analysis: State of the Art, LNAI 3626, Springer, Heidelberg, 2005.
    • (2005) LNAI , vol.3626
    • Burmeister, P.1    Holzer, R.2
  • 3
    • 41549121425 scopus 로고    scopus 로고
    • Yet another approach for completing missing values
    • L. Ben Othman, S. Ben Yahia: Yet Another Approach for Completing Missing Values. CLA 2006, pages 155-169.
    • (2006) CLA , pp. 155-169
    • Ben Othman, L.1    Ben Yahia, S.2
  • 5
    • 84947968052 scopus 로고    scopus 로고
    • Completing missing values using discovered formal concepts
    • S. Ben Yahia, Kh. Arour, A. Jaoua: Completing Missing Values Using Discovered Formal Concepts. DEXA 2000, pages 741-751.
    • (2000) DEXA , pp. 741-751
    • Ben Yahia, S.1    Arour, Kh.2    Jaoua, A.3
  • 7
    • 84864068049 scopus 로고    scopus 로고
    • Concept lattices of incomplete data
    • F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, Springer, Heidelberg
    • M. Krupka, J. Lastovicka: Concept lattices of incomplete data. In: F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278. Springer, Heidelberg, pages 180-194, 2012.
    • (2012) LNAI , vol.7278 , pp. 180-194
    • Krupka, M.1    Lastovicka, J.2
  • 8
    • 78649255936 scopus 로고    scopus 로고
    • Formal concept analysis of incomplete information system
    • J. Liu, X. Yao: Formal Concept Analysis of Incomplete Information System. In: FSKDIEEE (2010), pages 2016-2020.
    • (2010) FSKD IEEE , pp. 2016-2020
    • Liu, J.1    Yao, X.2
  • 9
    • 84924099977 scopus 로고    scopus 로고
    • Concept lattice generation by singular value decomposition
    • V. Snášel, R. Bělohlávek (Eds.)
    • P. Gajdoš, P. Moravec, V. Snášel: Concept Lattice Generation by Singular Value Decomposition, In: V. Snášel, R. Bělohlávek (Eds.): CLA 2004, pages 102-110.
    • CLA 2004 , pp. 102-110
    • Gajdoš, P.1    Moravec, P.2    Snášel, V.3
  • 11
    • 84922713615 scopus 로고    scopus 로고
    • Using nonnegative matrix factorization and concept lattice reduction to visualizing data
    • V. Snášel, H. Abdulla, M. Polovinčák: Using Nonnegative Matrix Factorization and Concept Lattice Reduction to visualizing data. SYRCoDIS, 2007.
    • (2007) SYRCoDIS
    • Snášel, V.1    Abdulla, H.2    Polovinčák, M.3
  • 12
    • 67650463074 scopus 로고    scopus 로고
    • Factor analysis of incidence data via novel decomposition of matrices
    • S. Ferré and S. Rudolph (Eds.): ICFCA 2009
    • R. Bělohlávek, V. Vychodil: Factor Analysis of incidence data via Novel Decomposition of Matrices, In: S. Ferré and S. Rudolph (Eds.): ICFCA 2009, LNAI 5548, pages 83-97, 2009.
    • (2009) LNAI , vol.5548 , pp. 83-97
    • Bělohlávek, R.1    Vychodil, V.2
  • 13
    • 71749101259 scopus 로고    scopus 로고
    • Discovery of Optimal Factors in binary data via novel method of matrix decomposition
    • R. Bělohlávek, V. Vychodil: Discovery of Optimal Factors in binary data via novel method of matrix decomposition. Journal of Computer and System Sciences 76(1)(2010), pages 3-20.
    • (2010) Journal of Computer and System Sciences , vol.76 , Issue.1 , pp. 3-20
    • Bělohlávek, R.1    Vychodil, V.2
  • 14
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • IEEE Computer Society Press, Los Alamitos, USA
    • Y. Koren, R. Bell and C. Volinsky. Matrix Factorization Techniques for Recommender Systems. COMPUTER (Vol. 42, 8): IEEE Computer Society Press, Los Alamitos, USA, 2009.
    • (2009) Computer , vol.42 , Issue.8
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 15
    • 77951114011 scopus 로고    scopus 로고
    • Investigation of various matrix factorization methods for large recommender systems
    • G. Takács, I. Pilászy, B. Németh. Investigation of Various Matrix Factorization Methods for Large Recommender Systems. KDD Netflix workshop, 2008.
    • (2008) KDD Netflix Workshop
    • Takács, G.1    Pilászy, I.2    Németh, B.3
  • 16
    • 33947180792 scopus 로고    scopus 로고
    • Stochastic learning
    • Bousquet, O. and von Luxburg, U., editors, Advanced Lectures on Machine Learning. Springer Verlag, Berlin
    • L. Bottou. Stochastic learning. In Bousquet, O. and von Luxburg, U., editors, Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176, pages 146-168. Springer Verlag, Berlin.
    • Lecture Notes in Artificial Intelligence, LNAI , vol.3176 , pp. 146-168
    • Bottou, L.1
  • 19
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • J. Bergstra, Y. Bengio: Random Search for Hyper-Parameter Optimization. J. Machine Learning Research 13, pages 281-305, 2012.
    • (2012) J. Machine Learning Research , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.