메뉴 건너뛰기




Volumn 118, Issue 47, 2014, Pages 11168-11176

A full-dimensional global potential energy surface of H3O+(ã3A) for the OH+(X̃3Σ-) + H2(X̃1Σg+) → H(2S) + H2O+(X̃2B1) reaction

Author keywords

[No Author keywords available]

Indexed keywords

MEAN SQUARE ERROR; MOLECULAR PHYSICS; POTENTIAL ENERGY SURFACES; QUANTUM CHEMISTRY;

EID: 84913568739     PISSN: 10895639     EISSN: 15205215     Source Type: Journal    
DOI: 10.1021/jp5100507     Document Type: Article
Times cited : (28)

References (78)
  • 1
    • 0001347826 scopus 로고
    • Formation and Depletion of Molecules in Dense Interstellar Clouds
    • Herbst, E.; Klemperer, W. Formation and Depletion of Molecules in Dense Interstellar Clouds. Astrophys. J. 1973, 185, 505-533.
    • (1973) Astrophys. J. , vol.185 , pp. 505-533
    • Herbst, E.1    Klemperer, W.2
  • 2
    • 0011237506 scopus 로고
    • Interstellar Chemistry
    • Watson, W. D. Interstellar Chemistry. Acc. Chem. Res. 1977, 10, 221-226.
    • (1977) Acc. Chem. Res. , vol.10 , pp. 221-226
    • Watson, W.D.1
  • 7
    • 33947488997 scopus 로고
    • Velocity Dependence of Ion - Molecule Reaction Cross Sections in a Mass Spectrometer
    • Kubose, D. A.; Hamill, W. H. Velocity Dependence of Ion - Molecule Reaction Cross Sections in a Mass Spectrometer. J. Am. Chem. Soc. 1963, 85, 125-127.
    • (1963) J. Am. Chem. Soc. , vol.85 , pp. 125-127
    • Kubose, D.A.1    Hamill, W.H.2
  • 8
    • 0000627096 scopus 로고
    • Thermal-Energy Ion-Neutral Reaction Rates 7. Some Hydrogen-Atom Abstraction Reactions
    • Fehsenfeld, F. C.; Schmeltekopf, A. L.; Ferguson, E. E. Thermal-Energy Ion-Neutral Reaction Rates 7. Some Hydrogen-Atom Abstraction Reactions. J. Chem. Phys. 1967, 46, 2802-2808.
    • (1967) J. Chem. Phys. , vol.46 , pp. 2802-2808
    • Fehsenfeld, F.C.1    Schmeltekopf, A.L.2    Ferguson, E.E.3
  • 9
    • 26644439268 scopus 로고
    • Concurrent Ion-Molecule Reactions 4. Reactions in Mixtures of Ammonia and Water with Deuterium and Methane
    • Harrison, A. G.; Thynne, J. C. J. Concurrent Ion-Molecule Reactions 4. Reactions in Mixtures of Ammonia and Water with Deuterium and Methane. Trans. Faraday Soc. 1968, 64, 945-953.
    • (1968) Trans. Faraday Soc. , vol.64 , pp. 945-953
    • Harrison, A.G.1    Thynne, J.C.J.2
  • 25
    • 84859180050 scopus 로고    scopus 로고
    • Quantum Dynamics of Complex-Forming Bimolecular Reactions
    • Guo, H. Quantum Dynamics of Complex-Forming Bimolecular Reactions. Int. Rev. Phys. Chem. 2012, 31, 1-68.
    • (2012) Int. Rev. Phys. Chem. , vol.31 , pp. 1-68
    • Guo, H.1
  • 26
    • 27644521490 scopus 로고    scopus 로고
    • 2, HD): Quasiclassical Trajectory Study and Comparison with Experiments
    • 2, HD): Quasiclassical Trajectory Study and Comparison with Experiments. J. Chem. Phys. 2005, 123, 174312.
    • (2005) J. Chem. Phys. , vol.123 , pp. 174312
    • Martinez, R.1    Sierra, J.D.2    Gonzalez, M.3
  • 34
    • 0038793537 scopus 로고    scopus 로고
    • 3: Approaching the Subwave Number Accuracy for the Inversion Splittings
    • 3: Approaching the Subwave Number Accuracy for the Inversion Splittings. J. Chem. Phys. 2003, 118, 10929-10938.
    • (2003) J. Chem. Phys. , vol.118 , pp. 10929-10938
    • Rajamäki, T.1    Miani, A.2    Halonen, L.3
  • 37
    • 84881452924 scopus 로고    scopus 로고
    • Relative Efficacy of Vibrational Vs. Translational Excitation in Promoting Atom-Diatom Reactivity: Rigorous Examination of Polanyi's Rules and Proposition of Sudden Vector Projection (SVP) Model
    • Jiang, B.; Guo, H. Relative Efficacy of Vibrational Vs. Translational Excitation in Promoting Atom-Diatom Reactivity: Rigorous Examination of Polanyi's Rules and Proposition of Sudden Vector Projection (SVP) Model. J. Chem. Phys. 2013, 138, 234104.
    • (2013) J. Chem. Phys. , vol.138 , pp. 234104
    • Jiang, B.1    Guo, H.2
  • 38
    • 84885673410 scopus 로고    scopus 로고
    • 3P), and Cl) Reactions
    • 3P), and Cl) Reactions. J. Am. Chem. Soc. 2013, 135, 15251-15256.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 15251-15256
    • Jiang, B.1    Guo, H.2
  • 40
    • 37149036190 scopus 로고    scopus 로고
    • A Simple and Efficient CCSD(T)-F12 Approximation
    • Adler, T. B.; Knizia, G.; Werner, H.-J. A Simple and Efficient CCSD(T)-F12 Approximation. J. Chem. Phys. 2007, 127, 221106.
    • (2007) J. Chem. Phys. , vol.127 , pp. 221106
    • Adler, T.B.1    Knizia, G.2    Werner, H.-J.3
  • 41
    • 59949093519 scopus 로고    scopus 로고
    • Simplified CCSD(T)-F12 Methods: Theory and Benchmarks
    • Knizia, G.; Adler, T. B.; Werner, H.-J. Simplified CCSD(T)-F12 Methods: Theory and Benchmarks. J. Chem. Phys. 2009, 130, 054104.
    • (2009) J. Chem. Phys. , vol.130 , pp. 054104
    • Knizia, G.1    Adler, T.B.2    Werner, H.-J.3
  • 42
    • 84903362116 scopus 로고    scopus 로고
    • An Expanded Calibration Study of the Explicitly Correlated CCSD(T)-F12b Method Using Large Basis Set Standard CCSD(T) Atomization Energies
    • Feller, D.; Peterson, K. A. An Expanded Calibration Study of the Explicitly Correlated CCSD(T)-F12b Method Using Large Basis Set Standard CCSD(T) Atomization Energies. J. Chem. Phys. 2013, 139, 084110.
    • (2013) J. Chem. Phys. , vol.139 , pp. 084110
    • Feller, D.1    Peterson, K.A.2
  • 43
    • 11744301188 scopus 로고
    • An Efficient Method for the Evaluation of Coupling Coefficients in Configuration Interaction Calculations
    • Knowles, P. J.; Werner, H.-J. An Efficient Method for the Evaluation of Coupling Coefficients in Configuration Interaction Calculations. Chem. Phys. Lett. 1988, 145, 514-522.
    • (1988) Chem. Phys. Lett. , vol.145 , pp. 514-522
    • Knowles, P.J.1    Werner, H.-J.2
  • 44
    • 24444434383 scopus 로고
    • An Efficient Internally Contracted Multiconfiguration-Reference Configuration Interaction Method
    • Werner, H.-J.; Knowles, P. J. An Efficient Internally Contracted Multiconfiguration-Reference Configuration Interaction Method. J. Chem. Phys. 1988, 89, 5803-5814.
    • (1988) J. Chem. Phys. , vol.89 , pp. 5803-5814
    • Werner, H.-J.1    Knowles, P.J.2
  • 45
    • 84987142859 scopus 로고
    • Configuration Interaction Calculations on Nitrogen Molecule
    • Langhoff, S. R.; Davidson, E. R. Configuration Interaction Calculations on Nitrogen Molecule. Int. J. Quantum Chem. 1974, 8, 61-72.
    • (1974) Int. J. Quantum Chem. , vol.8 , pp. 61-72
    • Langhoff, S.R.1    Davidson, E.R.2
  • 46
    • 33746614482 scopus 로고
    • Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen
    • Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.
    • (1989) J. Chem. Phys. , vol.90 , pp. 1007-1023
    • Dunning, T.H.1
  • 49
    • 0037780883 scopus 로고
    • A Second Order Multi-configuration SCF Procedure with Optimum Convergence
    • Werner, H.-J.; Knowles, P. J. A Second Order Multi-configuration SCF Procedure with Optimum Convergence. J. Chem. Phys. 1985, 82, 5053-5063.
    • (1985) J. Chem. Phys. , vol.82 , pp. 5053-5063
    • Werner, H.-J.1    Knowles, P.J.2
  • 50
    • 5944242677 scopus 로고
    • An Efficient Second-Order Mc Scf Method for Long Configuration Expansions
    • Knowles, P. J.; Werner, H.-J. An Efficient Second-Order Mc Scf Method for Long Configuration Expansions. Chem. Phys. Lett. 1985, 115, 259-267.
    • (1985) Chem. Phys. Lett. , vol.115 , pp. 259-267
    • Knowles, P.J.1    Werner, H.-J.2
  • 53
    • 0000757103 scopus 로고
    • Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces
    • Buckingham, A. D. Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces. Adv. Chem. Phys. 1967, 12, 107-142.
    • (1967) Adv. Chem. Phys. , vol.12 , pp. 107-142
    • Buckingham, A.D.1
  • 54
    • 0001578578 scopus 로고    scopus 로고
    • Molecular Simulation of Hydrogen Adsorption in Charged Single-Walled Carbon Nanotubes
    • Simonyan, V. V.; Diep, P.; Johnson, J. K. Molecular Simulation of Hydrogen Adsorption in Charged Single-Walled Carbon Nanotubes. J. Chem. Phys. 1999, 111, 9778-9783.
    • (1999) J. Chem. Phys. , vol.111 , pp. 9778-9783
    • Simonyan, V.V.1    Diep, P.2    Johnson, J.K.3
  • 55
    • 84986513567 scopus 로고
    • Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials: The Need for High Sampling Density in Formamide Conformational Analysis
    • Breneman, C. M.; Wiberg, K. B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials: The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem. 1990, 11, 361-373.
    • (1990) J. Comput. Chem. , vol.11 , pp. 361-373
    • Breneman, C.M.1    Wiberg, K.B.2
  • 57
    • 84903362821 scopus 로고    scopus 로고
    • Permutation Invariant Polynomial Neural Network Approach to Fitting Potential Energy Surfaces
    • Jiang, B.; Guo, H. Permutation Invariant Polynomial Neural Network Approach to Fitting Potential Energy Surfaces. J. Chem. Phys. 2013, 139, 054112.
    • (2013) J. Chem. Phys. , vol.139 , pp. 054112
    • Jiang, B.1    Guo, H.2
  • 58
    • 84903362821 scopus 로고    scopus 로고
    • Permutation Invariant Polynomial Neural Network Approach to Fitting Potential Energy Surfaces. II. Four-Atomic Systems
    • Li, J.; Jiang, B.; Guo, H. Permutation Invariant Polynomial Neural Network Approach to Fitting Potential Energy Surfaces. II. Four-Atomic Systems. J. Chem. Phys. 2013, 139, 204103.
    • (2013) J. Chem. Phys. , vol.139 , pp. 204103
    • Li, J.1    Jiang, B.2    Guo, H.3
  • 59
    • 77949425807 scopus 로고    scopus 로고
    • Potential Energy Surfaces Fitted by Artificial Neural Networks
    • Handley, C. M.; Popelier, P. L. A. Potential Energy Surfaces Fitted by Artificial Neural Networks. J. Phys. Chem. A 2010, 114, 3371-3383.
    • (2010) J. Phys. Chem. A , vol.114 , pp. 3371-3383
    • Handley, C.M.1    Popelier, P.L.A.2
  • 60
    • 80053512754 scopus 로고    scopus 로고
    • Neural Network Potential-Energy Surfaces in Chemistry: A Tool for Large-Scale Simulations
    • Behler, J. Neural Network Potential-Energy Surfaces in Chemistry: A Tool for Large-Scale Simulations. Phys. Chem. Chem. Phys. 2011, 13, 17930-17955.
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 17930-17955
    • Behler, J.1
  • 62
    • 77950103184 scopus 로고    scopus 로고
    • Permutationally Invariant Polynomial Basis for Molecular Energy Surface Fitting Via Monomial Symmetrization
    • Xie, Z.; Bowman, J. M. Permutationally Invariant Polynomial Basis for Molecular Energy Surface Fitting Via Monomial Symmetrization. J. Chem. Theory Comput. 2010, 6, 26-34.
    • (2010) J. Chem. Theory Comput. , vol.6 , pp. 26-34
    • Xie, Z.1    Bowman, J.M.2
  • 63
    • 72449129392 scopus 로고    scopus 로고
    • Permutationally Invariant Potential Energy Surfaces in High Dimensionality
    • Braams, B. J.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces in High Dimensionality. Int. Rev. Phys. Chem. 2009, 28, 577-606.
    • (2009) Int. Rev. Phys. Chem. , vol.28 , pp. 577-606
    • Braams, B.J.1    Bowman, J.M.2
  • 64
    • 0028543366 scopus 로고
    • Training Feedforward Networks with the Marquardt Algorithm
    • Hagan, M. T.; Menhaj, M. B. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural Networks 1994, 5, 989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 65
    • 84898074702 scopus 로고    scopus 로고
    • 2 Reaction on a New Permutationally Invariant Neural Network Potential Energy Surface
    • 2 Reaction on a New Permutationally Invariant Neural Network Potential Energy Surface. J. Chem. Phys. 2014, 140, 044327.
    • (2014) J. Chem. Phys. , vol.140 , pp. 044327
    • Li, J.1    Chen, J.2    Zhang, D.H.3    Guo, H.4
  • 68
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling Neural Networks: Many Could Be Better Than All
    • Zhou, Z.-H.; Wu, J.; Tang, W. Ensembling Neural Networks: Many Could Be Better Than All. Artif. Intell. 2002, 137, 239-263.
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 70
    • 0001562794 scopus 로고    scopus 로고
    • Classical Trajectory Simulations: Initial Conditions
    • Alinger, N. L., Ed.; Wiley: New York
    • Hase, W. L. Classical Trajectory Simulations: Initial Conditions. In Encyclopedia of Computational Chemistry; Alinger, N. L., Ed.; Wiley: New York, 1998; Vol. 1, pp 399-402.
    • (1998) Encyclopedia of Computational Chemistry , vol.1 , pp. 399-402
    • Hase, W.L.1
  • 74
    • 84918505684 scopus 로고    scopus 로고
    • The Sudden Vector Projection Model: Mode Specificity and Bond Selectivity Made Easy
    • Guo, H.; Jiang, B. The Sudden Vector Projection Model: Mode Specificity and Bond Selectivity Made Easy. Acc. Chem. Res. 2014, DOI: 10.1021/ar500350f.
    • (2014) Acc. Chem. Res.
    • Guo, H.1    Jiang, B.2
  • 76
    • 34249725082 scopus 로고    scopus 로고
    • Experimental Vibrational Zero-Point Energies: Diatomic Molecules
    • Irikura, K. K. Experimental Vibrational Zero-Point Energies: Diatomic Molecules. J. Phys. Chem. Ref. Data 2007, 36, 389-397.
    • (2007) J. Phys. Chem. Ref. Data , vol.36 , pp. 389-397
    • Irikura, K.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.