메뉴 건너뛰기




Volumn 42, Issue 5, 2015, Pages 2305-2312

Multivariate time series classification with parametric derivative dynamic time warping

Author keywords

Derivative dynamic time warping; Dynamic time warping; Multivariate time series

Indexed keywords

TIME SERIES;

EID: 84913554642     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.11.007     Document Type: Article
Times cited : (136)

References (49)
  • 2
    • 84886567160 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • Bache, K., & Lichman, M. (2013). UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. .
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 3
    • 84865005617 scopus 로고    scopus 로고
    • Correlation based dynamic time warping of multivariate time series
    • Z. Banko, and J. Abonyi Correlation based dynamic time warping of multivariate time series Expert Systems with Applications 39 2012 12814 12823
    • (2012) Expert Systems with Applications , vol.39 , pp. 12814-12823
    • Banko, Z.1    Abonyi, J.2
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An experimental comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An experimental comparison of voting classification algorithms: Bagging, boosting, and variants Machine Learning 36 1999 105 139
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 6
    • 84898934181 scopus 로고    scopus 로고
    • Classifying single trial EEG: Towards brain computer interfacing
    • T.G. Diettrich, S. Becker, & Z. Ghahramani (Eds.)
    • Blankertz, B., Curio, G., & Müller, K. R. (2002). Classifying single trial EEG: towards brain computer interfacing. In T.G. Diettrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural inf. proc. systems 14 (NIPS 01). Available from: .
    • (2002) Advances in Neural Inf. Proc. Systems 14 (NIPS 01)
    • Blankertz, B.1
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 17
    • 33646399713 scopus 로고    scopus 로고
    • Segment and combine approach for non-parametric time-series classification
    • LNAI 05
    • Geurts, P., & Wehenkel, L. (2005). Segment and combine approach for non-parametric time-series classification. In Proceedings of PKDD. Vol. 3721: LNAI 05 (pp. 478-485).
    • (2005) Proceedings of PKDD , vol.3721 , pp. 478-485
    • Geurts, P.1    Wehenkel, L.2
  • 19
    • 84864553882 scopus 로고    scopus 로고
    • Early classification of multivariate temporal observations by extraction of interpretable shapelets
    • D. Ghalwash, and Z. Obradović Early classification of multivariate temporal observations by extraction of interpretable shapelets BMC Bioinformatics 13 2012 195
    • (2012) BMC Bioinformatics , vol.13 , pp. 195
    • Ghalwash, D.1    Obradović, Z.2
  • 22
    • 84897412314 scopus 로고    scopus 로고
    • Non-isometric transforms in time series classification using DTW
    • T. Górecki, and M. Łuczak Non-isometric transforms in time series classification using DTW Knowledge-Based Systems 61 2014 98 108
    • (2014) Knowledge-Based Systems , vol.61 , pp. 98-108
    • Górecki, T.1    Łuczak, M.2
  • 23
    • 84898972680 scopus 로고    scopus 로고
    • Using derivatives in a longest common subsequence dissimilarity measure for time series classification
    • T. Górecki Using derivatives in a longest common subsequence dissimilarity measure for time series classification Pattern Recognition Letters 45C 2014 99 105
    • (2014) Pattern Recognition Letters , vol.45 C , pp. 99-105
    • Górecki, T.1
  • 24
    • 26944488293 scopus 로고    scopus 로고
    • Embedding time series data for classification
    • LNAI 05
    • Hayashi, A., Mizuhara, Y., & Suematsu, N. (2005). Embedding time series data for classification. In Proceedings of MLDM. Vol. 3587: LNAI 05 (pp. 356-365).
    • (2005) Proceedings of MLDM , vol.3587 , pp. 356-365
    • Hayashi, A.1    Mizuhara, Y.2    Suematsu, N.3
  • 25
    • 15544380168 scopus 로고    scopus 로고
    • Classification of multivariate time series and structured data using constructive induction
    • M.W. Kadous, and C. Sammut Classification of multivariate time series and structured data using constructive induction Machine Learning 58 1-2 2005 179 216
    • (2005) Machine Learning , vol.58 , Issue.12 , pp. 179-216
    • Kadous, M.W.1    Sammut, C.2
  • 30
    • 67349287486 scopus 로고    scopus 로고
    • Faster retrieval with a two-pass dynamic-time-warping lower bound
    • D. Lemire Faster retrieval with a two-pass dynamic-time-warping lower bound Pattern Recognition 42 9 2009 2169 2180
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 2169-2180
    • Lemire, D.1
  • 32
    • 40649108837 scopus 로고    scopus 로고
    • Feature selection for classification of variable length multi-attribute motions
    • V.A. Petrushin, L. Khan, Springer-Verlag
    • C. Li, L. Khan, and B. Prabhakaran Feature selection for classification of variable length multi-attribute motions V.A. Petrushin, L. Khan, Multimedia data mining and knowledge discovery 2007 Springer-Verlag 116 137
    • (2007) Multimedia Data Mining and Knowledge Discovery , pp. 116-137
    • Li, C.1    Khan, L.2    Prabhakaran, B.3
  • 33
    • 0033167419 scopus 로고    scopus 로고
    • Comparison and classification of stationary multivariate time series
    • E.A. Maharaj Comparison and classification of stationary multivariate time series Pattern Recognition 32 7 1999 1129 1138
    • (1999) Pattern Recognition , vol.32 , Issue.7 , pp. 1129-1138
    • Maharaj, E.A.1
  • 39
    • 0030370417 scopus 로고    scopus 로고
    • Bagging, boosting, and C4.5
    • Quinlan, R. (1996). Bagging, boosting, and C4.5. In AAAI/IAAI (Vol. 1, pp. 725-730).
    • (1996) AAAI/IAAI , vol.1 , pp. 725-730
    • Quinlan, R.1
  • 40
    • 22544442515 scopus 로고    scopus 로고
    • Support vector machines of interval based features for time series classification
    • J.J. Rodriguez, C.J. Alonso, and J.A. Maestro Support vector machines of interval based features for time series classification Knowledge-Based Systems 18 2005 171 178
    • (2005) Knowledge-Based Systems , vol.18 , pp. 171-178
    • Rodriguez, J.J.1    Alonso, C.J.2    Maestro, J.A.3
  • 42
    • 84872781513 scopus 로고    scopus 로고
    • Multi-dimensional dynamic time warping for gesture recognition
    • advanced school for computing and imaging
    • ten Holt, G. A., Reinders, M. J. T., & Hendriks, E. A. (2007). Multi-dimensional dynamic time warping for gesture recognition. In Proceedings of the 13th annual conference of the advanced school for computing and imaging.
    • (2007) Proceedings of the 13th Annual Conference
    • Ten Holt, G.A.1    Reinders, M.J.T.2    Hendriks, E.A.3
  • 46
    • 50949133035 scopus 로고    scopus 로고
    • Classification of multivariate time series using two-dimensional singular value decomposition
    • X. Weng, and J. Shen Classification of multivariate time series using two-dimensional singular value decomposition Knowledge-Based Systems 21 7 2008 535 539
    • (2008) Knowledge-Based Systems , vol.21 , Issue.7 , pp. 535-539
    • Weng, X.1    Shen, J.2
  • 47
    • 50949101943 scopus 로고    scopus 로고
    • Classification of multivariate time series using locality preserving projections
    • X. Weng, and J. Shen Classification of multivariate time series using locality preserving projections Knowledge-Based Systems 21 7 2008 581 587
    • (2008) Knowledge-Based Systems , vol.21 , Issue.7 , pp. 581-587
    • Weng, X.1    Shen, J.2
  • 48
    • 70449526103 scopus 로고    scopus 로고
    • A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams
    • M. Wöllmer, M. Al-Hames, F. Eyben, B. Schuller, and G. Rigoll A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams Neurocomputing 73 1-3 2009 366 380
    • (2009) Neurocomputing , vol.73 , Issue.13 , pp. 366-380
    • Wöllmer, M.1    Al-Hames, M.2    Eyben, F.3    Schuller, B.4    Rigoll, G.5
  • 49
    • 26944443453 scopus 로고    scopus 로고
    • CLeVer: A feature subset selection technique for multivariate time series
    • LNAI 05
    • Yang, K., Yoon, H., & Shahabi C. (2005). CLeVer: A feature subset selection technique for multivariate time series. In Proceedings of PAKDD. Vol: 3518. LNAI 05 (pp. 516-522).
    • (2005) Proceedings of PAKDD , vol.3518 , pp. 516-522
    • Yang, K.1    Yoon, H.2    Shahabi, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.