메뉴 건너뛰기




Volumn , Issue , 2014, Pages 297-306

Scalable visual instance mining with threads of features

Author keywords

Clustering; Instance mining; Min hash; Summarization; Thread of Features

Indexed keywords

MINING; STATISTICAL TESTS;

EID: 84913529555     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2647868.2654942     Document Type: Conference Paper
Times cited : (14)

References (28)
  • 1
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proc. VLDB, pages 487-499, 1994.
    • (1994) Proc. VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 0031346696 scopus 로고    scopus 로고
    • On the resemblance and containment of documents
    • A. Broder. On the resemblance and containment of documents. In SEQUENCES, 1997.
    • (1997) SEQUENCES
    • Broder, A.1
  • 4
    • 73849136385 scopus 로고    scopus 로고
    • Large-scale discovery of spatially related images
    • O. Chum and J. Matas. Large-scale discovery of spatially related images. IEEE Trans. PAMI, 32:371-377, 2010.
    • (2010) IEEE Trans. PAMI , vol.32 , pp. 371-377
    • Chum, O.1    Matas, J.2
  • 5
    • 70450192888 scopus 로고    scopus 로고
    • Geometric min-hashing: Finding a (thick) needle in a haystack
    • O. Chum, M. Perdoch, and J. Matas. Geometric min-hashing: Finding a (thick) needle in a haystack. Proc. CVPR, pages 17-24, 2009.
    • (2009) Proc. CVPR , pp. 17-24
    • Chum, O.1    Perdoch, M.2    Matas, J.3
  • 7
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc. SIGMOD, pages 1-12, 2000.
    • (2000) Proc. SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 8
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. Proc. SIGIR, pages 50-57, 1999.
    • (1999) Proc. SIGIR , pp. 50-57
    • Hofmann, T.1
  • 9
    • 77951207698 scopus 로고    scopus 로고
    • Improving bag-of-features for large scale image search
    • May
    • H. Jégou, M. Douze, and C. Schmid. Improving bag-of-features for large scale image search. IJCV, 87(3):192-212, May 2010.
    • (2010) IJCV , vol.87 , Issue.3 , pp. 192-212
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 11
    • 77956000289 scopus 로고    scopus 로고
    • Common visual pattern discovery via spatially coherent correspondences
    • H. Liu and S. Yan. Common visual pattern discovery via spatially coherent correspondences. In Proc. CVPR, pages 1609-1616, 2010.
    • (2010) Proc. CVPR , pp. 1609-1616
    • Liu, H.1    Yan, S.2
  • 12
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Proc. CVPR, pages 2161-2168, 2006.
    • (2006) Proc. CVPR , pp. 2161-2168
    • Nister, D.1    Stewenius, H.2
  • 13
  • 14
    • 84898422575 scopus 로고    scopus 로고
    • Geometric LDA: A generative model for particular object discovery
    • J. Philbin, J. Sivic, and A. Zisserman. Geometric LDA: A generative model for particular object discovery. In Proc. BMVC, 2008.
    • (2008) Proc. BMVC
    • Philbin, J.1    Sivic, J.2    Zisserman, A.3
  • 15
    • 65249182449 scopus 로고    scopus 로고
    • Object mining using a matching graph on very large image collections
    • J. Philbin and A. Zisserman. Object mining using a matching graph on very large image collections. In Proc. ICVGIP, pages 738-745, 2008.
    • (2008) Proc. ICVGIP , pp. 738-745
    • Philbin, J.1    Zisserman, A.2
  • 16
    • 80053419005 scopus 로고    scopus 로고
    • Scalable object discovery: A hash-based approach to clustering co-occurring visual words
    • G. F. Pineda, H. Koga, and T. Watanabe. Scalable object discovery: A hash-based approach to clustering co-occurring visual words. IEICE Trans. on Information and Systems, pages 2024-2035, 2011.
    • (2011) IEICE Trans. on Information and Systems , pp. 2024-2035
    • Pineda, G.F.1    Koga, H.2    Watanabe, T.3
  • 17
    • 33746644284 scopus 로고    scopus 로고
    • Video mining with frequent itemset configurations
    • T. Quack, V. Ferrari, and L. V. Gool. Video mining with frequent itemset configurations. In Proc. CIVR, pages 360-369, 2006.
    • (2006) Proc. CIVR , pp. 360-369
    • Quack, T.1    Ferrari, V.2    Gool, L.V.3
  • 18
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In Proc. CVPR, pages 1605-1614, 2006.
    • (2006) Proc. CVPR , pp. 1605-1614
    • Russell, B.C.1    Freeman, W.T.2    Efros, A.A.3    Sivic, J.4    Zisserman, A.5
  • 19
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In Proc. ICCV, 2003.
    • (2003) Proc. ICCV
    • Sivic, J.1    Zisserman, A.2
  • 20
    • 5044234908 scopus 로고    scopus 로고
    • Video data mining using configurations of viewpoint invariant regions
    • J. Sivic and A. Zisserman. Video data mining using configurations of viewpoint invariant regions. In Proc. CVPR, 2004.
    • (2004) Proc. CVPR
    • Sivic, J.1    Zisserman, A.2
  • 22
    • 67349190512 scopus 로고    scopus 로고
    • Localized matching using earth mover's distance towards discovery of common patterns from small image samples
    • H.-K. Tan and C.-W. Ngo. Localized matching using earth mover's distance towards discovery of common patterns from small image samples. Image Vision Computing, 27(10):1470-1483, 2009.
    • (2009) Image Vision Computing , vol.27 , Issue.10 , pp. 1470-1483
    • Tan, H.-K.1    Ngo, C.-W.2
  • 24
    • 50649111840 scopus 로고    scopus 로고
    • Spatial random partition for common visual pattern discovery
    • J. Yuan and Y. Wu. Spatial random partition for common visual pattern discovery. In Proc. ICCV, 2007.
    • (2007) Proc. ICCV
    • Yuan, J.1    Wu, Y.2
  • 25
    • 0033718951 scopus 로고    scopus 로고
    • Scalable algorithms for association mining
    • M. J. Zaki. Scalable algorithms for association mining. IEEE Trans. on KDE, pages 372-390, 2000.
    • (2000) IEEE Trans. on KDE , pp. 372-390
    • Zaki, M.J.1
  • 26
    • 84877621715 scopus 로고    scopus 로고
    • Searching visual instances with topology checking and context modeling
    • W. Zhang and C.-W. Ngo. Searching visual instances with topology checking and context modeling. In Proc. ICMR, 2012.
    • (2012) Proc. ICMR
    • Zhang, W.1    Ngo, C.-W.2
  • 27
    • 84871378394 scopus 로고    scopus 로고
    • Snap-and-ask: Answering multimodal question by naming visual instance
    • W. Zhang, L. Pang, and C. W. Ngo. Snap-and-ask: Answering multimodal question by naming visual instance. In ACM Multimedia, 2012.
    • (2012) ACM Multimedia
    • Zhang, W.1    Pang, L.2    Ngo, C.W.3
  • 28
    • 84864134072 scopus 로고    scopus 로고
    • Large vocabulary quantization for searching instances from videos
    • C. Zhu and S. Satoh. Large vocabulary quantization for searching instances from videos. In Proc. ICMR, 2012.
    • (2012) Proc. ICMR
    • Zhu, C.1    Satoh, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.