메뉴 건너뛰기




Volumn , Issue , 2014, Pages 497-504

Non-linear Variable Structure Regression (VSR) and its application in time-series forecasting

Author keywords

fuzzy rule based systems; fuzzy sets; linguistic terms; non linear regression; quantum particle swarm optimization

Indexed keywords

FUZZY INFERENCE; FUZZY RULES; FUZZY SETS; FUZZY SYSTEMS; ITERATIVE METHODS; PARTICLE SWARM OPTIMIZATION (PSO); REGRESSION ANALYSIS; TIME SERIES;

EID: 84912571659     PISSN: 10987584     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZ-IEEE.2014.6891546     Document Type: Conference Paper
Times cited : (8)

References (52)
  • 1
    • 34548206770 scopus 로고    scopus 로고
    • A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection
    • Aug
    • R. Alcala, J. Alcala-Fdez, and F. Herrera, " A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection," IEEE Trans. On Fuzzy System, vol. 15, no. 4, pp. 616-635, Aug. 2007.
    • (2007) IEEE Trans. on Fuzzy System , vol.15 , Issue.4 , pp. 616-635
    • Alcala, R.1    Alcala-Fdez, J.2    Herrera, F.3
  • 2
    • 79955565544 scopus 로고    scopus 로고
    • A fast and scalable multiobjective genetic fuzzy system for linguistic fuzzy modeling in high-dimensional regression problems
    • Aug
    • R. Alcala, M.J. Gacto, and F. Herrera, " A fast and scalable multiobjective genetic fuzzy System for linguistic fuzzy modeling in high-dimensional regression problems, " IEEE Trans. On Fuzzy Systems, vol.19, no.4, pp.666-681, Aug. 2011.
    • (2011) IEEE Trans. on Fuzzy Systems , vol.19 , Issue.4 , pp. 666-681
    • Alcala, R.1    Gacto, M.J.2    Herrera, F.3
  • 5
    • 54349085897 scopus 로고    scopus 로고
    • Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on the areas of fuzzy sets
    • Oct
    • Y. C. Chang, S. M. Chen, and C. J. Liau, " Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on the areas of fuzzy sets," IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1285-1301, Oct. 2008.
    • (2008) IEEE Trans. Fuzzy Syst , vol.16 , Issue.5 , pp. 1285-1301
    • Chang, Y.C.1    Chen, S.M.2    Liau, C.J.3
  • 6
    • 58149492007 scopus 로고    scopus 로고
    • Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on cutting and transformation techniques
    • Dec
    • S. M. Chen and Y. K. Ko, " Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on cutting and transformation techniques," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1626-1648, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst , vol.16 , Issue.6 , pp. 1626-1648
    • Chen, S.M.1    Ko, Y.K.2
  • 7
    • 84878706575 scopus 로고    scopus 로고
    • Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 gaussian fuzzy sets and genetic algorithms
    • June
    • S. Chen, Y. Chang, and J. Pan, " Fuzzy Rules Interpolation for Sparse Fuzzy Rule-Based Systems Based on Interval Type-2 Gaussian Fuzzy Sets and Genetic Algorithms," IEEE Trans. On Fuzzy Syst., Vol. 21, No. 3, June 2013.
    • (2013) IEEE Trans. on Fuzzy Syst , vol.21 , Issue.3
    • Chen, S.1    Chang, Y.2    Pan, J.3
  • 9
    • 0035415952 scopus 로고    scopus 로고
    • Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base
    • Aug
    • O. Cordon, F. Herrera, and P. Villar, " Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base," IEEE Trans. On Fuzzy Systems, vol. 9, no. 4, pp. 667-674, Aug. 2001.
    • (2001) IEEE Trans. on Fuzzy Systems , vol.9 , Issue.4 , pp. 667-674
    • Cordon, O.1    Herrera, F.2    Villar, P.3
  • 12
    • 84864813509 scopus 로고    scopus 로고
    • A review of the application of multiobjective evolutionary fuzzy systems: Current status and further directions
    • Feb
    • M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, and F. Herrera, " A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions," IEEE Trans. On Fuzzy Systems, vol.21, no.1, pp.45,65, Feb. 2013.
    • (2013) IEEE Trans. on Fuzzy Systems , vol.21 , Issue.65 , pp. 45
    • Fazzolari, M.1    Alcala, R.2    Nojima, Y.3    Ishibuchi, H.4    Herrera, F.5
  • 13
    • 79955593175 scopus 로고    scopus 로고
    • Building better causal theories: A fuzzy set approach to typologies in organization research
    • P. Fiss, " Building better causal theories: a fuzzy set approach to typologies in organization research," Academy of Management Journal, vol. 54, pp. 393-420, 2011.
    • (2011) Academy of Management Journal , vol.54 , pp. 393-420
    • Fiss, P.1
  • 17
    • 33645801813 scopus 로고    scopus 로고
    • Fuzzy interpolative reasoning via scale and move transformations
    • Apr
    • Z. H. Huang and Q. Shen, "Fuzzy interpolative reasoning via scale and move transformations, " IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp. 340-359, Apr. 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.2 , pp. 340-359
    • Huang, Z.H.1    Shen, Q.2
  • 19
    • 84867703937 scopus 로고    scopus 로고
    • Fuzzy set qualitative comparative analysis (fsqca): Challenges and applications
    • Berkeley, CA Aug
    • M. M. Korjani and J. M. Mendel, "Fuzzy set qualitative comparative analysis (fsQCA): challenges and applications, " NAFIPS Conf., Berkeley, CA, Aug. 2012
    • (2012) NAFIPS Conf
    • Korjani, M.M.1    Mendel, J.M.2
  • 23
    • 84860841913 scopus 로고    scopus 로고
    • Charles ragin's fuzzy set qualitative comparative analyses (fsqca) used for linguisti c summarization
    • J. M. Mendel and M. M. Korjani, "Charles Ragin's fuzzy set qualitative comparative analyses (fsQCA) used for linguisti c summarization," Information Sciences, vol. 202, pp. 1-23, 2012.
    • (2012) Information Sciences , vol.202 , pp. 1-23
    • Mendel, J.M.1    Korjani, M.M.2
  • 25
    • 84877006492 scopus 로고    scopus 로고
    • Theoretical aspects of fuzzy set qualitative comparative analysis (fsqca
    • J. M. Mendel and M. M. Korjani, "Theoretical aspects of fuzzy set qualitative comparative analysis (fsQCA), " Information Sciences, vol. 237, pp. 137-161, 2013.
    • (2013) Information Sciences , vol.237 , pp. 137-161
    • Mendel, J.M.1    Korjani, M.M.2
  • 27
    • 84912529578 scopus 로고    scopus 로고
    • A study on prediction of output in oilfield using multiple linear regression," int'l
    • July
    • I. B. Mutafar and R. Razali, " A study on prediction of output in oilfield using multiple linear regression," Int'l. J. of Applied Science and Technology, vol. 1, no. 4, pp. 107-113, July 2011.
    • (2011) J. of Applied Science and Technology , vol.1 , Issue.4 , pp. 107-113
    • Mutafar, I.B.1    Razali, R.2
  • 28
    • 84877106221 scopus 로고    scopus 로고
    • Interpreting multiple linear regression: A guidebook of variable importance
    • April
    • L. L. Nathans, F. L. Oswald and N. Kim, " Interpreting multiple linear regression: a guidebook of variable importance," in Practical Assessment, Research & Evaluation, vol. 17, vo. 9, April 2012.
    • (2012) Practical Assessment, Research & Evaluation , vol.17 , pp. 9
    • Nathans, L.L.1    Oswald, F.L.2    Kim, N.3
  • 33
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E.H. Ruspini, "A New Approach to Clustering ", Information and Control, Vo1.15, pp.22-32, 1969.
    • (1969) Information and Control , vol.15 , pp. 22-32
    • Ruspini, E.H.1
  • 35
    • 79251594551 scopus 로고    scopus 로고
    • Detecting and modeling nonlinearity in the gas furnace data
    • H. H. Stokes, M. Hinich, " Detecting and modeling nonlinearity in the gas furnace data," Journal of Computational Statistics, vol. 26, pp. 77-93, 2011.
    • (2011) Journal of Computational Statistics , vol.26 , pp. 77-93
    • Stokes, H.H.1    Hinich, M.2
  • 36
    • 45449126257 scopus 로고
    • Structure identification of fuzzy models
    • M. Sugeno and G. T. Kang, "Structure identification of fuzzy models, " Fuzzy Sets and Systems, vol. 28, pp.15-33, 1988.
    • (1988) Fuzzy Sets and Systems , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 37
    • 0027544110 scopus 로고
    • A fuzzy logic based approach to qualitative modeling
    • M. Sugeno, and T. Yasukawa, "A Fuzzy Logic Based Approach to Qualitative Modeling, " IEEE Trans. On Fuzzy Systems, vol. 1, pp. 7-31, 1993.
    • (1993) IEEE Trans. on Fuzzy Systems , vol.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 38
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • T. Takagi and M. Sugeno, " Fuzzy identification of systems and its application to modeling and control," IEEE Trans. On Systems, Man, and Cybernetics, vol. 15, pp. 116-132, 1985.
    • (1985) IEEE Trans. on Systems, Man, and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 39
    • 4844220240 scopus 로고    scopus 로고
    • Cons tructing a user-friendly ga-based fuzzy system directly from numerical data
    • Oct
    • Y. Teng and W. Wang, "Cons tructing a user-friendly ga-based fuzzy system directly from numerical data," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 5, pp. 2060-2070, Oct. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.5 , pp. 2060-2070
    • Teng, Y.1    Wang, W.2
  • 40
    • 84972812688 scopus 로고
    • Synthesis of fuzzy models for industrial processes: Some recent results
    • R. M. Tong, "Synthesis of Fuzzy Models For Industrial Processes: Some Recent Results," Int. J. General Systems, vol. 4, pp. 143-162, 1978.
    • (1978) Int. J. General Systems , vol.4 , pp. 143-162
    • Tong, R.M.1
  • 44
    • 0030087291 scopus 로고    scopus 로고
    • Complex systems modeling via fuzzy logic
    • L. Wang and R. Langari, "Complex Systems Modeling via Fuzzy Logic, " IEEE Trans. Syst. Man Cybern., vol. 26(1), pp.100-106, 1996.
    • (1996) IEEE Trans. Syst. Man Cybern , vol.26 , Issue.1 , pp. 100-106
    • Wang, L.1    Langari, R.2
  • 45
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation and orthogonal least squares learning
    • Sept
    • L.-X. Wang and J. M. Mendel, " Fuzzy basis functions, universal approximation and orthogonal least squares learning," IEEE Trans. On Neural Networks, vol. 3, pp. 807-813, Sept. 1992.
    • (1992) IEEE Trans. on Neural Networks , vol.3 , pp. 807-813
    • Wang, L.-X.1    Mendel, J.M.2
  • 46
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Nov./Dec
    • L. X. Wang and J. M. Mendel, "Generating fuzzy rules by learning from examples, " IEEE Trans. Syst. Man Cybern., vol. 22, no. 6, pp. 1414-1426, Nov./Dec. 1992.
    • (1992) IEEE Trans. Syst. Man Cybern , vol.22 , Issue.6 , pp. 1414-1426
    • Wang, L.X.1    Mendel, J.M.2
  • 47
    • 79960171154 scopus 로고    scopus 로고
    • Particle swarm optimization for determining fuzzy measures from data
    • Oct
    • X. Wang, Y. He, L. Dong and H. Zhao, "Particle swarm optimization for determining fuzzy measures from data," Information Sciences, vol. 181, pp. 4230-4252, Oct. 2011.
    • (2011) Information Sciences , vol.181 , pp. 4230-4252
    • Wang, X.1    He, Y.2    Dong, L.3    Zhao, H.4
  • 48
    • 54449088017 scopus 로고    scopus 로고
    • An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position
    • M. Xi, J. Sun and W. Xu, " An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position," Applied Mathematics and Computation, vol. 205, pp. 751-759, 2008.
    • (2008) Applied Mathematics and Computation , vol.205 , pp. 751-759
    • Xi, M.1    Sun, J.2    Xu, W.3
  • 50
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • Apr
    • J. Yaochu, " Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement," IEEE Trans. On Fuzzy Systems, vol.8, no.2, pp.212-221, Apr. 2000.
    • (2000) IEEE Trans. on Fuzzy Systems , vol.8 , Issue.2 , pp. 212-221
    • Yaochu, J.1
  • 51
    • 80053070606 scopus 로고    scopus 로고
    • A non-singleton interval type-2 fuzzy logic system for universal image noise removal using quantumbehaved particle swarm optimization
    • Jun
    • D. Zhai, M. Hao, J.M. Mendel , " A non-singleton interval type-2 fuzzy logic system for universal image noise removal using quantumbehaved particle swarm optimization," IEEE Trans. On Fuzzy Systems, vol. 19, pp. 957-964, Jun. 2011.
    • (2011) IEEE Trans. on Fuzzy Systems , vol.19 , pp. 957-964
    • Zhai, D.1    Hao, M.2    Mendel, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.