메뉴 건너뛰기




Volumn 5, Issue 22, 2014, Pages 4039-4043

ReaxFF reactive force-field modeling of the triple-phase boundary in a solid oxide fuel cell

Author keywords

Reactive molecular dynamics; ReaxFF; SOFC; Triple phase boundary

Indexed keywords

BUTANE; MOLECULAR DYNAMICS; NICKEL; PHASE BOUNDARIES; REACTION KINETICS; YTTRIA STABILIZED ZIRCONIA; YTTRIUM METALLOGRAPHY;

EID: 84912562302     PISSN: None     EISSN: 19487185     Source Type: Journal    
DOI: 10.1021/jz501891y     Document Type: Article
Times cited : (45)

References (26)
  • 1
    • 30344472148 scopus 로고    scopus 로고
    • Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
    • Zhu, H.; Kee, R.; Janardhanan, V.; Deutschmann, O.; Goodwin, D. J. Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells. Electrochem. Soc. 2005, 152, A2427-A2440.
    • (2005) Electrochem. Soc. , vol.152 , pp. A2427-A2440
    • Zhu, H.1    Kee, R.2    Janardhanan, V.3    Deutschmann, O.4    Goodwin, D.J.5
  • 2
    • 69949185594 scopus 로고    scopus 로고
    • Ammonia-Fed Solid Oxide Fuel Cells for Power Generation-A Review
    • Ni, M.; Leung, M. K. H.; Leung, D. Y. C. Ammonia-Fed Solid Oxide Fuel Cells for Power Generation-A Review. Int. J. Energy Res. 2009, 33, 943-959.
    • (2009) Int. J. Energy Res. , vol.33 , pp. 943-959
    • Ni, M.1    Leung, M.K.H.2    Leung, D.Y.C.3
  • 3
    • 0001334262 scopus 로고    scopus 로고
    • Catalytic Aspects of the Steam Reforming Of Hydrocarbons in Internal Reforming Fuel Cells
    • Clarke, S.; Dicks, A.; Pointon, K.; Smith, T.; Swann, A. Catalytic Aspects of the Steam Reforming Of Hydrocarbons in Internal Reforming Fuel Cells. Catal. Today 1997, 38, 411-423.
    • (1997) Catal. Today , vol.38 , pp. 411-423
    • Clarke, S.1    Dicks, A.2    Pointon, K.3    Smith, T.4    Swann, A.5
  • 5
    • 42649107775 scopus 로고    scopus 로고
    • ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia
    • van Duin, A. C. T.; Merinov, B. V.; Jang, S. S.; Goddard, W. A., III. ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia. J. Phys. Chem. A 2008, 112, 3133-3140.
    • (2008) J. Phys. Chem. A , vol.112 , pp. 3133-3140
    • Van Duin, A.C.T.1    Merinov, B.V.2    Jang, S.S.3    Goddard, W.A.4
  • 6
    • 77949815673 scopus 로고    scopus 로고
    • Development And Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel
    • Mueller, J. E.; van Duin, A. C. T.; Goddard, W. A., III. Development And Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel. J. Phys. Chem. C 2010, 114, 4939-4949.
    • (2010) J. Phys. Chem. C , vol.114 , pp. 4939-4949
    • Mueller, J.E.1    Van Duin, A.C.T.2    Goddard, W.A.3
  • 7
    • 13444288029 scopus 로고    scopus 로고
    • Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes
    • Nielson, K. D.; van Duin, A. C. T.; Oxgaard, J.; Deng, W. Q.; Goddard, W. A. Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes. J. Phys. Chem. A 2005, 109, 493-499.
    • (2005) J. Phys. Chem. A , vol.109 , pp. 493-499
    • Nielson, K.D.1    Van Duin, A.C.T.2    Oxgaard, J.3    Deng, W.Q.4    Goddard, W.A.5
  • 8
    • 0038519364 scopus 로고    scopus 로고
    • Oxygen Diffusion in Yttria Stabilised Zirconia - Experimental Results and Molecular Dynamics Calculations
    • Kilo, M.; Argirusis, C.; Borchardt, G.; Jackson, R. Oxygen Diffusion in Yttria Stabilised Zirconia - Experimental Results and Molecular Dynamics Calculations. Phys. Chem. Chem. Phys. 2003, 5, 2219-2224.
    • (2003) Phys. Chem. Chem. Phys. , vol.5 , pp. 2219-2224
    • Kilo, M.1    Argirusis, C.2    Borchardt, G.3    Jackson, R.4
  • 9
    • 0027552523 scopus 로고
    • Ceramic Fuel Cells
    • Minh, N. Q. Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993, 76, 563-588.
    • (1993) J. Am. Ceram. Soc. , vol.76 , pp. 563-588
    • Minh, N.Q.1
  • 10
    • 81055124174 scopus 로고    scopus 로고
    • Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles
    • Cucinotta, C. S.; Bernasconi, M.; Parrinello, M. Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles. Phys. Rev. Lett. 2011, 107, 206103.
    • (2011) Phys. Rev. Lett. , vol.107 , pp. 206103
    • Cucinotta, C.S.1    Bernasconi, M.2    Parrinello, M.3
  • 11
    • 84891771901 scopus 로고    scopus 로고
    • Direct Modeling of the Electrochemistry in the Three-Phase Boundary of Solid Oxide Fuel Cell Anodes by Density Functional Theory: A Critical Overview
    • Shishkin, M.; Ziegler, T. Direct Modeling of the Electrochemistry in the Three-Phase Boundary of Solid Oxide Fuel Cell Anodes by Density Functional Theory: A Critical Overview. Phys. Chem. Chem. Phys. 2014, 16, 1798-1808.
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 1798-1808
    • Shishkin, M.1    Ziegler, T.2
  • 12
    • 84867186736 scopus 로고    scopus 로고
    • Combined DFT and Microkinetic Modeling Study of Hydrogen Oxidation at the Ni/YSZ Anode of Solid Oxide Fuel Cells
    • Ammal, S. C.; Heyden, A. Combined DFT and Microkinetic Modeling Study of Hydrogen Oxidation at the Ni/YSZ Anode of Solid Oxide Fuel Cells. J. Phys. Chem. Lett. 2012, 3, 2767-2772.
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 2767-2772
    • Ammal, S.C.1    Heyden, A.2
  • 13
    • 68049126029 scopus 로고    scopus 로고
    • Modeling Electrochemical Oxidation of Hydrogen on Ni-YSZ Pattern Anodes
    • Goodwin, D. G.; Zhu, H.; Colclasure, A. M.; Kee, R. G. Modeling Electrochemical Oxidation of Hydrogen on Ni-YSZ Pattern Anodes. J. Electrochem. Soc. 2009, 156, B1004-B1021.
    • (2009) J. Electrochem. Soc. , vol.156 , pp. B1004-B1021
    • Goodwin, D.G.1    Zhu, H.2    Colclasure, A.M.3    Kee, R.G.4
  • 14
    • 84886786627 scopus 로고    scopus 로고
    • Modelling and Ni/Yttria-Stabilized-Zirconia Pattern Anode Experimental Validation of a New Charge Transfer Reactions Mechanism for Hydrogen Electrochemical Oxidation on Solid Oxide Fuel Cell Anodes
    • Yao, W.; Croiset, E. Modelling and Ni/Yttria-Stabilized-Zirconia Pattern Anode Experimental Validation of a New Charge Transfer Reactions Mechanism for Hydrogen Electrochemical Oxidation on Solid Oxide Fuel Cell Anodes. J. Power Sources 2014, 248, 777-788.
    • (2014) J. Power Sources , vol.248 , pp. 777-788
    • Yao, W.1    Croiset, E.2
  • 17
    • 2342483699 scopus 로고    scopus 로고
    • Importance of Gas-Phase Kinetics within the Anode Channel of a Solid-Oxide Fuel Cell
    • Sheng, C. Y.; Dean, A. M. Importance of Gas-Phase Kinetics within the Anode Channel of a Solid-Oxide Fuel Cell. J. Phys. Chem. A 2004, 108, 3772-3783.
    • (2004) J. Phys. Chem. A , vol.108 , pp. 3772-3783
    • Sheng, C.Y.1    Dean, A.M.2
  • 18
    • 69049117722 scopus 로고
    • Kinetics of Pyrolysis of n-Butane
    • Torok, J.; Sandler, S. Kinetics of Pyrolysis of n-Butane. Can. J. Chem. 1969, 47, 3863-3869.
    • (1969) Can. J. Chem. , vol.47 , pp. 3863-3869
    • Torok, J.1    Sandler, S.2
  • 19
    • 2542500251 scopus 로고
    • Rate Constants for Initiation of n-Butane Pyrolysis and for Recombination of Ethyl Radicals
    • Hughes, D. G.; Marshall, R. M.; Purnell, J. H. Rate Constants for Initiation of n-Butane Pyrolysis and for Recombination of Ethyl Radicals. J. Chem. Soc., Faraday Trans. 1974, 70, 594-599.
    • (1974) J. Chem. Soc., Faraday Trans. , vol.70 , pp. 594-599
    • Hughes, D.G.1    Marshall, R.M.2    Purnell, J.H.3
  • 20
    • 77950243995 scopus 로고    scopus 로고
    • Application of the ReaxFF Reactive Force Field to Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition
    • Mueller, J. E.; van Duin, A. C. T.; Goddard, W. A., III. Application of the ReaxFF Reactive Force Field to Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition. J. Phys. Chem. C 2010, 114, 5675-5685.
    • (2010) J. Phys. Chem. C , vol.114 , pp. 5675-5685
    • Mueller, J.E.1    Van Duin, A.C.T.2    Goddard, W.A.3
  • 21
    • 0026627071 scopus 로고
    • Detailed Chemical Kinetics Study of the Role of Pressure in Butane Pyrolysis
    • Mallinson, R. G.; Braun, R. L.; Westbrook, C. K.; Burnham, A. K. Detailed Chemical Kinetics Study of the Role of Pressure in Butane Pyrolysis. Ind. Eng. Chem. Res. 1992, 31, 37-45.
    • (1992) Ind. Eng. Chem. Res. , vol.31 , pp. 37-45
    • Mallinson, R.G.1    Braun, R.L.2    Westbrook, C.K.3    Burnham, A.K.4
  • 23
    • 4243420264 scopus 로고
    • Empirical Interatomic Potential for Carbon, with Applications to Amorphous-Carbon
    • Tersoff, J. Empirical Interatomic Potential for Carbon, with Applications to Amorphous-Carbon. Phys. Rev. Lett. 1988, 61, 2879-2882.
    • (1988) Phys. Rev. Lett. , vol.61 , pp. 2879-2882
    • Tersoff, J.1
  • 24
    • 33644817086 scopus 로고
    • Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films
    • Brenner, D. W. Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films. Phys. Rev. B 1990, 42, 9458-9471.
    • (1990) Phys. Rev. B , vol.42 , pp. 9458-9471
    • Brenner, D.W.1
  • 25
    • 0342876686 scopus 로고
    • Electronegativity Equalization Method for the Calculation of Atomic Charges in Molecules
    • Mortier, W. J.; Ghosh, S. K.; Shankar, S. Electronegativity Equalization Method for the Calculation of Atomic Charges in Molecules. J. Am. Chem. Soc. 1986, 108, 4315-4320.
    • (1986) J. Am. Chem. Soc. , vol.108 , pp. 4315-4320
    • Mortier, W.J.1    Ghosh, S.K.2    Shankar, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.