메뉴 건너뛰기




Volumn 37, Issue 12, 2014, Pages 1267-1281

What do we gain from simplicity versus complexity in species distribution models?

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84912534583     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/ecog.00845     Document Type: Article
Times cited : (446)

References (105)
  • 1
    • 84867412542 scopus 로고    scopus 로고
    • Comparative interpretation of count, presence-absence and point methods for species distribution models
    • Aarts, G. et al. 2012. Comparative interpretation of count, presence-absence and point methods for species distribution models. - Methods Ecol. Evol. 3: 177-187.
    • (2012) Methods Ecol. Evol , vol.3 , pp. 177-187
    • Aarts, G.1
  • 2
    • 78649540757 scopus 로고    scopus 로고
    • A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits
    • Albert, C. H. et al. 2010. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. - Funct. Ecol. 24: 1192-1201.
    • (2010) Funct. Ecol , vol.24 , pp. 1192-1201
    • Albert, C.H.1
  • 3
    • 33748529602 scopus 로고    scopus 로고
    • Five (or so) challenges for species distribution modelling
    • Araújo, M. B. and Guisan, A. 2006. Five (or so) challenges for species distribution modelling. - J. Biogeogr. 33: 1677-1688.
    • (2006) J. Biogeogr , vol.33 , pp. 1677-1688
    • Araújo, M.B.1    Guisan, A.2
  • 4
    • 33845633261 scopus 로고    scopus 로고
    • Ensemble forecasting of species distributions
    • Araújo, M. and New, M. 2007. Ensemble forecasting of species distributions. - Trends Ecol. Evol. 22: 42-47.
    • (2007) Trends Ecol. Evol , vol.22 , pp. 42-47
    • Araújo, M.1    New, M.2
  • 5
    • 84864255928 scopus 로고    scopus 로고
    • Uses and misuses of bioclimatic envelope modelling
    • Araujo, M. B. and Peterson, A. T. 2012. Uses and misuses of bioclimatic envelope modelling. - Ecology 93: 1527-1539.
    • (2012) Ecology , vol.93 , pp. 1527-1539
    • Araujo, M.B.1    Peterson, A.T.2
  • 6
    • 24344464067 scopus 로고    scopus 로고
    • Validation of species-climate impact models under climate change
    • Araújo, M. B. et al. 2005. Validation of species-climate impact models under climate change. - Global Change Biol. 11: 1504-1513.
    • (2005) Global Change Biol , vol.11 , pp. 1504-1513
    • Araújo, M.B.1
  • 7
    • 0002932496 scopus 로고
    • On non-linear species response models in ordination
    • Austin, M. P. 1976. On non-linear species response models in ordination. - Vegetatio 33: 33-41.
    • (1976) Vegetatio , vol.33 , pp. 33-41
    • Austin, M.P.1
  • 8
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
    • Austin, M. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. - Ecol. Model. 157: 101-118.
    • (2002) Ecol. Model , vol.157 , pp. 101-118
    • Austin, M.1
  • 9
    • 33847675260 scopus 로고    scopus 로고
    • Species distribution models and ecological theory: a critical assessment and some possible new approaches
    • Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. - Ecol. Model. 200: 1-19.
    • (2007) Ecol. Model , vol.200 , pp. 1-19
    • Austin, M.1
  • 10
    • 0024928332 scopus 로고
    • A new model for the continuum concept
    • Austin, M. P. and Smith, T. M. 1989. A new model for the continuum concept. - Vegetatio 83: 35-47.
    • (1989) Vegetatio , vol.83 , pp. 35-47
    • Austin, M.P.1    Smith, T.M.2
  • 11
    • 0031459041 scopus 로고    scopus 로고
    • To fix or not to fix the species limits, that is the ecological question: response to Jari Oksanen
    • Austin, M. P. and Nicholls, A. O. 1997. To fix or not to fix the species limits, that is the ecological question: response to Jari Oksanen. - J. Veg. Sci. 8: 743-748.
    • (1997) J. Veg. Sci , vol.8 , pp. 743-748
    • Austin, M.P.1    Nicholls, A.O.2
  • 12
    • 0028174803 scopus 로고
    • Determining species response functions to an environmental gradient by means of a β-function
    • Austin, M. P. et al. 1994. Determining species response functions to an environmental gradient by means of a β-function. - J. Veg. Sci. 5: 215-228.
    • (1994) J. Veg. Sci , vol.5 , pp. 215-228
    • Austin, M.P.1
  • 13
    • 33646557004 scopus 로고    scopus 로고
    • Error and uncertainty in habitat models
    • Barry, S. and Elith, J. 2006. Error and uncertainty in habitat models. - J. Appl. Ecol. 43: 413-423.
    • (2006) J. Appl. Ecol , vol.43 , pp. 413-423
    • Barry, S.1    Elith, J.2
  • 14
    • 74549164251 scopus 로고    scopus 로고
    • Regression analysis of spatial data
    • Beale, C. M. et al. 2010. Regression analysis of spatial data. - Ecol. Lett. 13: 246-264.
    • (2010) Ecol. Lett , vol.13 , pp. 246-264
    • Beale, C.M.1
  • 15
    • 84860650866 scopus 로고    scopus 로고
    • Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances
    • Boulangeat, I. et al. 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. - Ecol. Lett. 15: 584-593.
    • (2012) Ecol. Lett , vol.15 , pp. 584-593
    • Boulangeat, I.1
  • 16
    • 84913604434 scopus 로고    scopus 로고
    • Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area
    • Boulangeat, I. et al. 2014. Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area. - Ecography 37: 1230-1239.
    • (2014) Ecography , vol.37 , pp. 1230-1239
    • Boulangeat, I.1
  • 17
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures
    • Breiman, L. 2001. Statistical modeling: the two cultures. - Statist. Sci. 16: 199-231.
    • (2001) Statist. Sci , vol.16 , pp. 199-231
    • Breiman, L.1
  • 19
    • 84555178389 scopus 로고    scopus 로고
    • Does including physiology improve species distribution model predictions of responses to recent climate change?
    • Buckley, L. B. et al. 2011. Does including physiology improve species distribution model predictions of responses to recent climate change? - Ecology 92: 2214-2221.
    • (2011) Ecology , vol.92 , pp. 2214-2221
    • Buckley, L.B.1
  • 22
    • 84877924096 scopus 로고    scopus 로고
    • The problem of pattern and scale in ecology: what have we learned in 20 years?
    • Chave, J. 2013. The problem of pattern and scale in ecology: what have we learned in 20 years? - Ecol. Lett. 16: 4-16.
    • (2013) Ecol. Lett , vol.16 , pp. 4-16
    • Chave, J.1
  • 23
    • 84866758013 scopus 로고    scopus 로고
    • A new method for dealing with residual spatial autocorrelation in species distribution models
    • Crase, B. et al. 2012. A new method for dealing with residual spatial autocorrelation in species distribution models. - Ecography 35: 879-888.
    • (2012) Ecography , vol.35 , pp. 879-888
    • Crase, B.1
  • 24
    • 14844358016 scopus 로고    scopus 로고
    • Modelling geographical patterns in species richness using eigenvector-based spatial filters
    • Diniz-Filho, J. and Bini, L. M. 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. - Global Ecol. Biogeogr. 14: 177-185.
    • (2005) Global Ecol. Biogeogr , vol.14 , pp. 177-185
    • Diniz-Filho, J.1    Bini, L.M.2
  • 25
    • 84874725861 scopus 로고    scopus 로고
    • Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
    • Dormann, C. F. et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. - Ecography 36: 27-46.
    • (2013) Ecography , vol.36 , pp. 27-46
    • Dormann, C.F.1
  • 26
    • 35848930781 scopus 로고    scopus 로고
    • Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
    • Dormann, C. F. et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. - Ecography 30: 609-628.
    • (2007) Ecography , vol.30 , pp. 609-628
    • Dormann, C.F.1
  • 27
    • 84880268534 scopus 로고    scopus 로고
    • Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables
    • Dubuis, A. et al. 2012. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. - J. Veg. Sci. 24: 593-606.
    • (2012) J. Veg. Sci , vol.24 , pp. 593-606
    • Dubuis, A.1
  • 28
    • 0033933324 scopus 로고    scopus 로고
    • Size-specific sensitivity: applying a new structured population model
    • Easterling, M. R. et al. 2000. Size-specific sensitivity: applying a new structured population model. - Ecology 81: 694-708.
    • (2000) Ecology , vol.81 , pp. 694-708
    • Easterling, M.R.1
  • 29
    • 33750012330 scopus 로고    scopus 로고
    • Effects of sample survey design on the accuracy of classification tree models in species distribution models
    • Edwards, T. C. Jr et al. 2006. Effects of sample survey design on the accuracy of classification tree models in species distribution models. - Ecol. Model. 199: 132-141.
    • (2006) Ecol. Model , vol.199 , pp. 132-141
    • Edwards Jr, T.C.1
  • 30
    • 0742271558 scopus 로고    scopus 로고
    • The generalization paradox of ensembles
    • Elder, J. F., IV 2003. The generalization paradox of ensembles. - J. Comput. Graph. Stat. 12: 853-864.
    • (2003) J. Comput. Graph. Stat , vol.12 , pp. 853-864
    • Elder IV, J.F.1
  • 31
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models
    • Elith, J. and Graham, C. H. 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. - Ecography 32: 66-77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 32
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: ecological explanation and prediction across space and time
    • Elith, J. and Leathwick, J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. - Annu. Rev. Ecol. Evol. Syst. 40: 677-697.
    • (2009) Annu. Rev. Ecol. Evol. Syst , vol.40 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 33
    • 22144478718 scopus 로고    scopus 로고
    • The evaluation strip: a new and robust method for plotting predicted responses from species distribution models
    • Elith, J. et al. 2005. The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. - Ecol. Model. 186: 280-289.
    • (2005) Ecol. Model , vol.186 , pp. 280-289
    • Elith, J.1
  • 34
    • 78650029343 scopus 로고    scopus 로고
    • The art of modelling range-shifting species
    • Elith, J. et al. 2010. The art of modelling range-shifting species. - Methods Ecol. Evol. 1: 330-342.
    • (2010) Methods Ecol. Evol , vol.1 , pp. 330-342
    • Elith, J.1
  • 35
    • 84884351044 scopus 로고    scopus 로고
    • Do simple models lead to generality in ecology?
    • Evans, M. R. et al. 2013. Do simple models lead to generality in ecology? - Trends Ecol. Evol. 28: 578-583.
    • (2013) Trends Ecol. Evol , vol.28 , pp. 578-583
    • Evans, M.R.1
  • 36
    • 84912558409 scopus 로고    scopus 로고
    • A proportional observer bias model for multispecies distribution modeling
    • In press.
    • Fithian, W. et al. 2014. A proportional observer bias model for multispecies distribution modeling. - arXiv In press.
    • (2014) arXiv
    • Fithian, W.1
  • 37
    • 4544320603 scopus 로고    scopus 로고
    • Effect displays in R for generalised linear models
    • Fox, J. 2003. Effect displays in R for generalised linear models. - J. Stat. Softw. 8: 1-27.
    • (2003) J. Stat. Softw , vol.8 , pp. 1-27
    • Fox, J.1
  • 38
    • 77953167567 scopus 로고    scopus 로고
    • Moving beyond static species distribution models in support of conservation biogeography
    • Franklin, J. 2010. Moving beyond static species distribution models in support of conservation biogeography. - Divers. Distrib. 16: 321-330.
    • (2010) Divers. Distrib , vol.16 , pp. 321-330
    • Franklin, J.1
  • 39
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J. H. 2001. Greedy function approximation: a gradient boosting machine. - Ann. Stat. 29: 1189-1232.
    • (2001) Ann. Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 40
    • 34247192178 scopus 로고    scopus 로고
    • Average predictive comparisons for models with nonlinearity, interactions, and variance components
    • Gelman, A. and Pardoe, I. 2007. Average predictive comparisons for models with nonlinearity, interactions, and variance components. - Sociol. Methodol. 37: 23-51.
    • (2007) Sociol. Methodol , vol.37 , pp. 23-51
    • Gelman, A.1    Pardoe, I.2
  • 41
    • 70450064693 scopus 로고    scopus 로고
    • Variable importance assessment in regression: linear regression versus random forest
    • Grömping, U. 2009. Variable importance assessment in regression: linear regression versus random forest. - Am. Stat. 63: 308-319.
    • (2009) Am. Stat , vol.63 , pp. 308-319
    • Grömping, U.1
  • 42
    • 24344493920 scopus 로고    scopus 로고
    • Predicting species distribution: offering more than simple habitat models
    • Guisan, A. and Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. - Ecol Lett. 8: 993-1009.
    • (2005) Ecol Lett , vol.8 , pp. 993-1009
    • Guisan, A.1    Thuiller, W.2
  • 43
    • 84886730120 scopus 로고    scopus 로고
    • Predicting species distributions for conservation decisions
    • Guisan, A. et al. 2013. Predicting species distributions for conservation decisions. - Ecology 16: 1424-1435.
    • (2013) Ecology , vol.16 , pp. 1424-1435
    • Guisan, A.1
  • 46
    • 84890882740 scopus 로고    scopus 로고
    • Nondetection sampling bias in marked presence-only data
    • Hefley, T. J. et al. 2013. Nondetection sampling bias in marked presence-only data. - Ecol. Evol. 3: 5225-5236.
    • (2013) Ecol. Evol , vol.3 , pp. 5225-5236
    • Hefley, T.J.1
  • 47
    • 84860258937 scopus 로고    scopus 로고
    • Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model
    • Hijmans, R. J. 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. - Ecology 93: 679-688.
    • (2012) Ecology , vol.93 , pp. 679-688
    • Hijmans, R.J.1
  • 48
    • 33750006271 scopus 로고    scopus 로고
    • Evaluating the ability of habitat suitability models to predict species presences
    • Hirzel, A. et al. 2006. Evaluating the ability of habitat suitability models to predict species presences. - Ecol. Model. 199: 142-152.
    • (2006) Ecol. Model , vol.199 , pp. 142-152
    • Hirzel, A.1
  • 49
    • 73949100849 scopus 로고    scopus 로고
    • Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives
    • Holt, R. D. 2009. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. - Proc. Natl Acad. Sci. USA 106: 19659-19665.
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19659-19665
    • Holt, R.D.1
  • 50
    • 79955504883 scopus 로고    scopus 로고
    • Decomposing environmental, spatial, and spatiotemporal components of species distributions
    • Hothorn, T. et al. 2011. Decomposing environmental, spatial, and spatiotemporal components of species distributions. - Ecol. Monogr. 81: 329-347.
    • (2011) Ecol. Monogr , vol.81 , pp. 329-347
    • Hothorn, T.1
  • 51
    • 80055061923 scopus 로고    scopus 로고
    • Incorporating boosted regression trees into ecological latent variable models
    • Burgard, W. and Roth, D. (eds), Association for the Advancement of Artificial Intelligence.
    • Hutchinson, R. A. et al. 2011. Incorporating boosted regression trees into ecological latent variable models. - In: Burgard, W. and Roth, D. (eds), Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, pp. 1343-1348.
    • (2011) Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence , pp. 1343-1348
    • Hutchinson, R.A.1
  • 52
    • 65349162791 scopus 로고    scopus 로고
    • Multivariate forecasts of potential distributions of invasive plant species
    • Ibáñez, I. et al. 2009. Multivariate forecasts of potential distributions of invasive plant species. - Ecol. Appl. 19: 359-375.
    • (2009) Ecol. Appl , vol.19 , pp. 359-375
    • Ibáñez, I.1
  • 53
    • 84912558408 scopus 로고    scopus 로고
    • Effective degrees of freedom: a flawed metaphor
    • In press.
    • Janson, L. et al. 2013. Effective degrees of freedom: a flawed metaphor. - arXiv In press.
    • (2013) arXiv
    • Janson, L.1
  • 54
    • 62149086187 scopus 로고    scopus 로고
    • Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges
    • Kearney, M. and Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. - Ecol. Lett. 12: 334-350.
    • (2009) Ecol. Lett , vol.12 , pp. 334-350
    • Kearney, M.1    Porter, W.2
  • 55
    • 84861511297 scopus 로고    scopus 로고
    • Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents
    • Kissling, W. D. et al. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. - J. Biogeogr. 39: 2163-2178.
    • (2012) J. Biogeogr , vol.39 , pp. 2163-2178
    • Kissling, W.D.1
  • 56
    • 84896711129 scopus 로고    scopus 로고
    • Imperfect detection impacts the performance of species distribution models
    • Lahoz-Monfort, J. J. et al. 2013. Imperfect detection impacts the performance of species distribution models. - Global Ecol. Biogeogr. 23: 504-515.
    • (2013) Global Ecol. Biogeogr , vol.23 , pp. 504-515
    • Lahoz-Monfort, J.J.1
  • 57
    • 33645097847 scopus 로고    scopus 로고
    • Building statistical models to analyze species distributions
    • Latimer, A. M. et al. 2006. Building statistical models to analyze species distributions. - Ecol. Appl. 16: 33-50.
    • (2006) Ecol. Appl , vol.16 , pp. 33-50
    • Latimer, A.M.1
  • 58
    • 84892455871 scopus 로고    scopus 로고
    • Prevalence, thresholds and the performance of presence-absence models
    • Lawson, C. R. et al. 2013. Prevalence, thresholds and the performance of presence-absence models. - Methods Ecol. Evol. 5: 54-64.
    • (2013) Methods Ecol. Evol , vol.5 , pp. 54-64
    • Lawson, C.R.1
  • 59
    • 0027881344 scopus 로고
    • Spatial autocorrelation: trouble or new paradigm?
    • Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? - Ecology 74: 1659-1673.
    • (1993) Ecology , vol.74 , pp. 1659-1673
    • Legendre, P.1
  • 60
    • 84888871372 scopus 로고    scopus 로고
    • The importance of temporal climate variability for spatial patterns in plant diversity
    • Letten, A. D. et al. 2013. The importance of temporal climate variability for spatial patterns in plant diversity. - Ecography 36: 1341-1349.
    • (2013) Ecography , vol.36 , pp. 1341-1349
    • Letten, A.D.1
  • 61
    • 38949161848 scopus 로고    scopus 로고
    • AUC: a misleading measure of the performance of predictive distribution models
    • Lobo, J. et al. 2008. AUC: a misleading measure of the performance of predictive distribution models. - Global Ecol. Biogeogr. 17: 145-151.
    • (2008) Global Ecol. Biogeogr , vol.17 , pp. 145-151
    • Lobo, J.1
  • 62
    • 84901006964 scopus 로고    scopus 로고
    • Data availability constrains model complexity, generality, and utility: a response to Evans
    • Lonergan, M. 2014. Data availability constrains model complexity, generality, and utility: a response to Evans et al. - Trends. Ecol. Evol. 29: 301-302.
    • (2014) Trends. Ecol. Evol , vol.29 , pp. 301-302
    • Lonergan, M.1
  • 63
    • 84901006964 scopus 로고    scopus 로고
    • Data availability constrains model complexity, generality, and utility: a response to Evans
    • Lonergan, M. et al. 2014. Data availability constrains model complexity, generality, and utility: a response to Evans et al. - Trends. Ecol. Evol. 29: 301-302.
    • (2014) Trends. Ecol. Evol , vol.29 , pp. 301-302
    • Lonergan, M.1
  • 64
    • 31344435055 scopus 로고    scopus 로고
    • Designing occupancy studies: general advice and allocating survey effort
    • MacKenzie, D. I. and Royle, J. A. 2005. Designing occupancy studies: general advice and allocating survey effort. - J. Appl. Ecol. 42: 1105-1114.
    • (2005) J. Appl. Ecol , vol.42 , pp. 1105-1114
    • MacKenzie, D.I.1    Royle, J.A.2
  • 65
    • 0000989596 scopus 로고    scopus 로고
    • Estimating site occupancy rates when detection probabilities are less than one
    • MacKenzie, D. I. et al. 2002. Estimating site occupancy rates when detection probabilities are less than one. - Ecology 83: 2248-2255.
    • (2002) Ecology , vol.83 , pp. 2248-2255
    • MacKenzie, D.I.1
  • 66
    • 33745719239 scopus 로고    scopus 로고
    • Improving generalized regression analysis for the spatial prediction of forest communities
    • Maggini, R. et al. 2006. Improving generalized regression analysis for the spatial prediction of forest communities. - J. Biogeogr. 33: 1729-1749.
    • (2006) J. Biogeogr , vol.33 , pp. 1729-1749
    • Maggini, R.1
  • 67
    • 84867663184 scopus 로고    scopus 로고
    • Fine-scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice
    • Mcinerny, G. J. and Purves, D. W. 2011. Fine-scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. - Methods Ecol. Evol. 2: 248-257.
    • (2011) Methods Ecol. Evol , vol.2 , pp. 248-257
    • Mcinerny, G.J.1    Purves, D.W.2
  • 68
    • 84884702154 scopus 로고    scopus 로고
    • A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter
    • Merow, C. et al. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. - Ecography 36: 1-12.
    • (2013) Ecography , vol.36 , pp. 1-12
    • Merow, C.1
  • 69
    • 84912570532 scopus 로고    scopus 로고
    • On using integral projection models to build demographically driven species distribution models
    • Merow, C. et al. 2014. On using integral projection models to build demographically driven species distribution models. - Ecography 37: 1167-1183.
    • (2014) Ecography , vol.37 , pp. 1167-1183
    • Merow, C.1
  • 70
    • 66949166015 scopus 로고    scopus 로고
    • Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients
    • Normand, S. et al. 2009. Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. - Global Ecol. Biogeogr. 18: 437-449.
    • (2009) Global Ecol. Biogeogr , vol.18 , pp. 437-449
    • Normand, S.1
  • 71
    • 0030942569 scopus 로고    scopus 로고
    • Why the beta-function cannot be used to estimate skewness of species responses
    • Oksanen, J. 1997. Why the beta-function cannot be used to estimate skewness of species responses. - J. Veg. Sci. 8: 147-152.
    • (1997) J. Veg. Sci , vol.8 , pp. 147-152
    • Oksanen, J.1
  • 72
    • 84855561216 scopus 로고    scopus 로고
    • Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics
    • Pagel, J. and Schurr, F. M. 2012. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. - Global Ecol. Biogeogr. 21: 293-304.
    • (2012) Global Ecol. Biogeogr , vol.21 , pp. 293-304
    • Pagel, J.1    Schurr, F.M.2
  • 73
    • 0033831709 scopus 로고    scopus 로고
    • Evaluating the predictive performance of habitat models developed using logistic regression
    • Pearce, J. and Ferrier, S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. - Ecol. Model. 133: 225-245.
    • (2000) Ecol. Model , vol.133 , pp. 225-245
    • Pearce, J.1    Ferrier, S.2
  • 74
    • 33748501576 scopus 로고    scopus 로고
    • Model-based uncertainty in species range prediction
    • Pearson, R. G. et al. 2006. Model-based uncertainty in species range prediction. - J. Biogeogr. 33: 1704-1711.
    • (2006) J. Biogeogr , vol.33 , pp. 1704-1711
    • Pearson, R.G.1
  • 75
    • 84879762194 scopus 로고    scopus 로고
    • Shifts in Arctic vegetation and associated feedbacks under climate change
    • In press
    • Pearson, R. G. et al. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. - Nat. Clim. Change In press.
    • (2013) Nat. Clim. Change
    • Pearson, R.G.1
  • 77
    • 41449100102 scopus 로고    scopus 로고
    • Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation
    • Phillips, S. and Dudik, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. - Ecography 31: 161-175.
    • (2008) Ecography , vol.31 , pp. 161-175
    • Phillips, S.1    Dudik, M.2
  • 78
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips, S. et al. 2006. Maximum entropy modeling of species geographic distributions. - Ecol. Model. 190: 231-259.
    • (2006) Ecol. Model , vol.190 , pp. 231-259
    • Phillips, S.1
  • 79
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data
    • Phillips, S. et al. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. - Ecol. Appl. 19: 181-197.
    • (2009) Ecol. Appl , vol.19 , pp. 181-197
    • Phillips, S.1
  • 80
    • 0033907676 scopus 로고    scopus 로고
    • On the relationship between niche and distribution
    • Pulliam, H. R. 2000. On the relationship between niche and distribution. - Ecol. Lett. 3: 349-361.
    • (2000) Ecol. Lett , vol.3 , pp. 349-361
    • Pulliam, H.R.1
  • 81
    • 35848968879 scopus 로고    scopus 로고
    • A null-model for significance testing of presence-only species distribution models
    • Raes, N. and terSteege, H. 2007. A null-model for significance testing of presence-only species distribution models. - Ecography 30: 727-736.
    • (2007) Ecography , vol.30 , pp. 727-736
    • Raes, N.1    terSteege, H.2
  • 82
    • 33646543813 scopus 로고    scopus 로고
    • Are niche-based species distribution models transferable in space?
    • Randin, C. F. et al. 2006. Are niche-based species distribution models transferable in space? - J. Biogeogr. 33: 1689-1703.
    • (2006) J. Biogeogr , vol.33 , pp. 1689-1703
    • Randin, C.F.1
  • 83
    • 68949105820 scopus 로고    scopus 로고
    • The effect of species response form on species distribution model prediction and inference
    • Santika, T. and Hutchinson, M. F. 2009. The effect of species response form on species distribution model prediction and inference. - Ecol. Model. 220: 2365-2379.
    • (2009) Ecol. Model , vol.220 , pp. 2365-2379
    • Santika, T.1    Hutchinson, M.F.2
  • 84
    • 0035131827 scopus 로고    scopus 로고
    • For what applications can probability and non-probability sampling be used?
    • Schreuder, H. T. et al. 2001. For what applications can probability and non-probability sampling be used? - Environ. Monitoring Assess. 66: 281-291.
    • (2001) Environ. Monitoring Assess , vol.66 , pp. 281-291
    • Schreuder, H.T.1
  • 85
    • 84869862926 scopus 로고    scopus 로고
    • How to understand species' niches and range dynamics: a demographic research agenda for biogeography
    • Schurr, F. M. et al. 2012. How to understand species' niches and range dynamics: a demographic research agenda for biogeography. - J. Biogeogr. 39: 2146-2162.
    • (2012) J. Biogeogr , vol.39 , pp. 2146-2162
    • Schurr, F.M.1
  • 86
    • 84913607041 scopus 로고    scopus 로고
    • Using dynamic vegetation models to simulate plant range shifts
    • Snell, R. et al. 2014. Using dynamic vegetation models to simulate plant range shifts. - Ecography 37: 1184-1197.
    • (2014) Ecography , vol.37 , pp. 1184-1197
    • Snell, R.1
  • 87
    • 35848961225 scopus 로고    scopus 로고
    • Grinnellian and Eltonian niches and geographic distributions of species
    • Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. - Ecol. Lett. 10: 1115-1123.
    • (2007) Ecol. Lett , vol.10 , pp. 1115-1123
    • Soberón, J.1
  • 88
    • 48549095457 scopus 로고    scopus 로고
    • Conditional variable importance for random forests
    • Strobl, C. et al. 2008. Conditional variable importance for random forests. - BMC Bioinform. 9: 307.
    • (2008) BMC Bioinform , vol.9 , pp. 307
    • Strobl, C.1
  • 89
    • 80052936889 scopus 로고    scopus 로고
    • Applications of species distribution modeling to paleobiology
    • Svenning, J.-C. et al. 2011. Applications of species distribution modeling to paleobiology. - Q. Sci. Rev. 30: 2930-2947.
    • (2011) Q. Sci. Rev , vol.30 , pp. 2930-2947
    • Svenning, J.-C.1
  • 90
    • 0242275331 scopus 로고    scopus 로고
    • BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change
    • Thuiller, W. 2003. BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change. - Global Change Biol. 9: 1353-1362.
    • (2003) Global Change Biol , vol.9 , pp. 1353-1362
    • Thuiller, W.1
  • 91
    • 4744352914 scopus 로고    scopus 로고
    • Effects of restricting environmental range of data to project current and future species distributions
    • Thuiller, W. et al. 2004. Effects of restricting environmental range of data to project current and future species distributions. - Ecography 27: 165-172.
    • (2004) Ecography , vol.27 , pp. 165-172
    • Thuiller, W.1
  • 92
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD - a platform for ensemble forecasting of species distributions
    • Thuiller, W. et al. 2009. BIOMOD - a platform for ensemble forecasting of species distributions. - Ecography 32: 369-373.
    • (2009) Ecography , vol.32 , pp. 369-373
    • Thuiller, W.1
  • 93
    • 84877913778 scopus 로고    scopus 로고
    • A road map for integrating eco-evolutionary processes into biodiversity models
    • Thuiller, W. et al. 2013. A road map for integrating eco-evolutionary processes into biodiversity models. - Ecol. Lett. 16: 94-105.
    • (2013) Ecol. Lett , vol.16 , pp. 94-105
    • Thuiller, W.1
  • 94
    • 84912523408 scopus 로고    scopus 로고
    • Does probability of occurrence relate to demographic performance?
    • Thuiller, W. et al. 2014. Does probability of occurrence relate to demographic performance? - Ecography 37: 1155-1166.
    • (2014) Ecography , vol.37 , pp. 1155-1166
    • Thuiller, W.1
  • 95
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. - J. R. Stat. Soc. B 58: 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 96
    • 15744389091 scopus 로고    scopus 로고
    • Effects of spatial scale on the predictive ability of habitat models for the green woodpecker in Switzerland
    • In: Scott, J. M. (eds), Island Press.
    • Tobalske, C. 2002. Effects of spatial scale on the predictive ability of habitat models for the green woodpecker in Switzerland. - In: Scott, J. M. et al. (eds), Predicting species occurrences: issues of accuracy and scale. Island Press, pp. 197-204.
    • (2002) Predicting species occurrences: issues of accuracy and scale , pp. 197-204
    • Tobalske, C.1
  • 97
    • 0035662548 scopus 로고    scopus 로고
    • Inferring process from pattern: can territory occupancy provide information about life history parameters?
    • Tyre, A. J. et al. 2001. Inferring process from pattern: can territory occupancy provide information about life history parameters? - Ecol. Appl. 11: 1722-1737.
    • (2001) Ecol. Appl , vol.11 , pp. 1722-1737
    • Tyre, A.J.1
  • 98
    • 70449732203 scopus 로고    scopus 로고
    • Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models
    • Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. - J. Biogeogr. 36: 2290-2299.
    • (2009) J. Biogeogr , vol.36 , pp. 2290-2299
    • Veloz, S.D.1
  • 99
    • 84894139434 scopus 로고    scopus 로고
    • Model-based control of observer bias for the analysis of presence-only data in ecology
    • Warton, D. I. et al. 2013. Model-based control of observer bias for the analysis of presence-only data in ecology. - PLoS One 8: e79168.
    • (2013) PLoS One , vol.8 , pp. e79168
    • Warton, D.I.1
  • 100
    • 84872240589 scopus 로고    scopus 로고
    • Fitting and interpreting occupancy models
    • Welsh, A. H. et al. 2013. Fitting and interpreting occupancy models. - PLoS One 8: e52015.
    • (2013) PLoS One , vol.8 , pp. e52015
    • Welsh, A.H.1
  • 102
    • 12244311665 scopus 로고    scopus 로고
    • Learning and evaluating classifiers under sample selection bias
    • Zadrozny, B. 2004. Learning and evaluating classifiers under sample selection bias. - ICML 2004: 114.
    • (2004) ICML , vol.2004 , pp. 114
    • Zadrozny, B.1
  • 103
    • 73949090388 scopus 로고    scopus 로고
    • Climatic extremes improve predictions of spatial patterns of tree species
    • Zimmermann, N. E. et al. 2009. Climatic extremes improve predictions of spatial patterns of tree species. - Proc. Natl Acad. Sci. USA 106 (Suppl. 2): 19723-19728.
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , Issue.SUPPL.2 , pp. 19723-19728
    • Zimmermann, N.E.1
  • 104
    • 78650359994 scopus 로고    scopus 로고
    • New trends in species distribution modelling
    • Zimmermann, N. E. et al. 2010. New trends in species distribution modelling. - Ecography 33: 985-989.
    • (2010) Ecography , vol.33 , pp. 985-989
    • Zimmermann, N.E.1
  • 105
    • 84860606870 scopus 로고    scopus 로고
    • Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions
    • Zurell, D. et al. 2012. Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. - Divers. Distrib. 18: 628-634.
    • (2012) Divers. Distrib , vol.18 , pp. 628-634
    • Zurell, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.