메뉴 건너뛰기




Volumn 32, Issue 12, 2014, Pages 1157-1170

A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; COST EFFECTIVENESS ANALYSIS; FOLLOW UP; HANDLE MISSING DATA; HUMAN; INFORMATION PROCESSING; INTENTION TO TREAT ANALYSIS; OUTCOME ASSESSMENT; PATIENT CODING; PATIENT PARTICIPATION; PRACTICE GUIDELINE; QUALITY ADJUSTED LIFE YEAR; RANDOMIZED CONTROLLED TRIAL (TOPIC); RESOURCE ALLOCATION; SENSITIVITY ANALYSIS; SURVIVAL RATE; COST BENEFIT ANALYSIS; PROCEDURES; STANDARDS; STATISTICS;

EID: 84912523498     PISSN: 11707690     EISSN: 11792027     Source Type: Journal    
DOI: 10.1007/s40273-014-0193-3     Document Type: Article
Times cited : (438)

References (43)
  • 1
    • 79952576381 scopus 로고    scopus 로고
    • The National Academies Press, Washington, DC:
    • Panel on Handling Missing Data in Clinical Trials; National Research Council. The prevention and treatment of missing data in clinical trials. Washington, DC: The National Academies Press; 2010.
    • (2010) The prevention and treatment of missing data in clinical trials
  • 2
    • 24944450634 scopus 로고    scopus 로고
    • Handling missing data in patient-level cost-effectiveness analysis alongside randomised clinical trials
    • PID: 16162026
    • Manca A, Palmer S. Handling missing data in patient-level cost-effectiveness analysis alongside randomised clinical trials. Appl Health Econ Health Policy. 2005;4(2):65–75.
    • (2005) Appl Health Econ Health Policy , vol.4 , Issue.2 , pp. 65-75
    • Manca, A.1    Palmer, S.2
  • 3
    • 17144396786 scopus 로고    scopus 로고
    • The analysis of incomplete cost data due to dropout
    • PID: 15729743
    • Oostenbrink JB, Al MJ. The analysis of incomplete cost data due to dropout. Health Econ. 2005;14(8):763–76.
    • (2005) Health Econ , vol.14 , Issue.8 , pp. 763-776
    • Oostenbrink, J.B.1    Al, M.J.2
  • 4
    • 0038290384 scopus 로고    scopus 로고
    • Missing…. presumed at random: cost-analysis of incomplete data
    • PID: 12720255
    • Briggs A, Clark T, Wolstenholme J, Clarke P. Missing…. presumed at random: cost-analysis of incomplete data. Health Econ. 2003;12(5):377–92.
    • (2003) Health Econ , vol.12 , Issue.5 , pp. 377-392
    • Briggs, A.1    Clark, T.2    Wolstenholme, J.3    Clarke, P.4
  • 5
    • 61449426157 scopus 로고    scopus 로고
    • The impact of using different imputation methods for missing quality of life scores on the estimation of the cost-effectiveness of lung-volume-reduction surgery
    • PID: 18435426
    • Blough DK, Ramsey S, Sullivan SD, Yusen R. The impact of using different imputation methods for missing quality of life scores on the estimation of the cost-effectiveness of lung-volume-reduction surgery. Health Econ. 2009;18(1):91–101.
    • (2009) Health Econ , vol.18 , Issue.1 , pp. 91-101
    • Blough, D.K.1    Ramsey, S.2    Sullivan, S.D.3    Yusen, R.4
  • 6
    • 51349161190 scopus 로고    scopus 로고
    • Simple imputation methods were inadequate for missing not at random (MNAR) quality of life data
    • Fielding S, Fayers PM, McDonald A, McPherson G, Campbell MK. Simple imputation methods were inadequate for missing not at random (MNAR) quality of life data. Health Qual Life Outcomes. 2008;6(57):1–57.
    • (2008) Health Qual Life Outcomes , vol.6 , Issue.57 , pp. 1-57
    • Fielding, S.1    Fayers, P.M.2    McDonald, A.3    McPherson, G.4    Campbell, M.K.5
  • 7
    • 84855523282 scopus 로고    scopus 로고
    • Missing data in trial-based cost-effectiveness analysis: the current state of play
    • PID: 22223561
    • Noble SM, Hollingworth W, Tilling K. Missing data in trial-based cost-effectiveness analysis: the current state of play. Health Econ. 2012;21(2):187–200.
    • (2012) Health Econ , vol.21 , Issue.2 , pp. 187-200
    • Noble, S.M.1    Hollingworth, W.2    Tilling, K.3
  • 8
    • 0030056579 scopus 로고    scopus 로고
    • Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party
    • COI: 1:STN:280:DyaK28zit1Kkug%3D%3D, PID: 8704542
    • Drummond M, Jefferson T. Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party. BMJ. 1996;313(7052):275–6.
    • (1996) BMJ , vol.313 , Issue.7052 , pp. 275-276
    • Drummond, M.1    Jefferson, T.2
  • 9
    • 79958734748 scopus 로고    scopus 로고
    • Guide to the methods of technology appraisal 2013
    • National Institute for Health and Care Excellence. Guide to the methods of technology appraisal 2013. London: National Institute for Health and Clinical Excellence; 2013 Apr 4.
    • London: National Institute for Health and Clinical Excellence , pp. 4
  • 10
    • 27744468588 scopus 로고    scopus 로고
    • Good research practices for cost-effectiveness analysis alongside clinical trials: the ISPOR RCT-CEA Task Force Report
    • PID: 16176491
    • Ramsey S, Willke R, Briggs A, Brown R, Buxton M, Chawla A, et al. Good research practices for cost-effectiveness analysis alongside clinical trials: the ISPOR RCT-CEA Task Force Report. Value Health. 2005;8(5):521–33.
    • (2005) Value Health , vol.8 , Issue.5 , pp. 521-533
    • Ramsey, S.1    Willke, R.2    Briggs, A.3    Brown, R.4    Buxton, M.5    Chawla, A.6
  • 11
    • 79955417678 scopus 로고    scopus 로고
    • Strategy for intention to treat analysis in randomised trials with missing outcome data
    • PID: 21300711
    • White IR, Horton NJ, Carpenter J. Strategy for intention to treat analysis in randomised trials with missing outcome data. BMJ. 2011;342:d40.
    • (2011) BMJ , vol.342 , pp. d40
    • White, I.R.1    Horton, N.J.2    Carpenter, J.3
  • 13
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little RJ. Modeling the drop-out mechanism in repeated-measures studies. J Am Stat Assoc. 1995;90(431):1112–21.
    • (1995) J Am Stat Assoc , vol.90 , Issue.431 , pp. 1112-1121
    • Little, R.J.1
  • 14
    • 15844423857 scopus 로고    scopus 로고
    • Adjusting for partially missing baseline measurements in randomized trials
    • PID: 15570623
    • White IR, Thompson SG. Adjusting for partially missing baseline measurements in randomized trials. Stat Med. 2005;24(7):993–1007.
    • (2005) Stat Med , vol.24 , Issue.7 , pp. 993-1007
    • White, I.R.1    Thompson, S.G.2
  • 15
    • 84867917862 scopus 로고    scopus 로고
    • Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods
    • PID: 22489953
    • Seaman SR, Bartlett JW, White IR. Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods. BMC Med Res Methodol. 2012;12(1):46.
    • (2012) BMC Med Res Methodol , vol.12 , Issue.1 , pp. 46
    • Seaman, S.R.1    Bartlett, J.W.2    White, I.R.3
  • 16
    • 11344284719 scopus 로고    scopus 로고
    • Regression methods for cost-effectiveness analysis with censored data
    • PID: 15515137
    • Willan AR, Lin D, Manca A. Regression methods for cost-effectiveness analysis with censored data. Stat Med. 2005;24(1):131–45.
    • (2005) Stat Med , vol.24 , Issue.1 , pp. 131-145
    • Willan, A.R.1    Lin, D.2    Manca, A.3
  • 17
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • PID: 16401269
    • Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics. 2005;61(4):962–73.
    • (2005) Biometrics , vol.61 , Issue.4 , pp. 962-973
    • Bang, H.1    Robins, J.M.2
  • 18
    • 84878516633 scopus 로고    scopus 로고
    • Review of inverse probability weighting for dealing with missing data
    • PID: 21220355
    • Seaman SR, White IR. Review of inverse probability weighting for dealing with missing data. Stat Methods Med Res. 2013;22(3):278–95.
    • (2013) Stat Methods Med Res , vol.22 , Issue.3 , pp. 278-295
    • Seaman, S.R.1    White, I.R.2
  • 20
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • PID: 21225900
    • White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4):377–99.
    • (2011) Stat Med , vol.30 , Issue.4 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 22
    • 84886052495 scopus 로고    scopus 로고
    • Multiple imputation methods for handling missing data in cost-effectiveness analyses that use data from hierarchical studies: an application to cluster randomized trials
    • Gomes M, Díaz-Ordaz K, Grieve R, Kenward MG. Multiple imputation methods for handling missing data in cost-effectiveness analyses that use data from hierarchical studies: an application to cluster randomized trials. Med Decis Mak. 2013;33(8):1051–63.
    • (2013) Med Decis Mak , vol.33 , Issue.8 , pp. 1051-1063
    • Gomes, M.1    Díaz-Ordaz, K.2    Grieve, R.3    Kenward, M.G.4
  • 23
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation
    • PID: 20106935
    • Lee KJ, Carlin JB. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Am J Epidemiol. 2010;171(5):624–32.
    • (2010) Am J Epidemiol , vol.171 , Issue.5 , pp. 624-632
    • Lee, K.J.1    Carlin, J.B.2
  • 24
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • PID: 17621469
    • Van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16(3):219–42.
    • (2007) Stat Methods Med Res , vol.16 , Issue.3 , pp. 219-242
    • Van Buuren, S.1
  • 25
    • 70349590221 scopus 로고    scopus 로고
    • Multiple imputation of missing values: further update of ice, with an emphasis on categorical variables
    • Royston P. Multiple imputation of missing values: further update of ice, with an emphasis on categorical variables. Stata J. 2009;9(3):466.
    • (2009) Stata J , vol.9 , Issue.3 , pp. 466
    • Royston, P.1
  • 26
    • 38949157166 scopus 로고    scopus 로고
    • Estimating the cost-effectiveness of an intervention in a clinical trial when partial cost information is available: a Bayesian approach
    • PID: 17533622
    • Lambert PC, Billingham LJ, Cooper NJ, Sutton AJ, Abrams KR. Estimating the cost-effectiveness of an intervention in a clinical trial when partial cost information is available: a Bayesian approach. Health Econ. 2008;17(1):67–81.
    • (2008) Health Econ , vol.17 , Issue.1 , pp. 67-81
    • Lambert, P.C.1    Billingham, L.J.2    Cooper, N.J.3    Sutton, A.J.4    Abrams, K.R.5
  • 28
    • 51949111620 scopus 로고
    • Smearing estimate: a nonparametric retransformation method
    • Duan N. Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc. 1983;78(383):605–10.
    • (1983) J Am Stat Assoc , vol.78 , Issue.383 , pp. 605-610
    • Duan, N.1
  • 29
    • 84952497143 scopus 로고
    • Missing-data adjustments in large surveys
    • Little RJ. Missing-data adjustments in large surveys. J Bus Econ Stat. 1988;6(3):287–96.
    • (1988) J Bus Econ Stat , vol.6 , Issue.3 , pp. 287-296
    • Little, R.J.1
  • 30
    • 34249308543 scopus 로고    scopus 로고
    • Cost-effectiveness in clinical trials: using multiple imputation to deal with incomplete cost data
    • PID: 17456514
    • Burton A, Billingham LJ, Bryan S. Cost-effectiveness in clinical trials: using multiple imputation to deal with incomplete cost data. Clin Trials. 2007;4(2):154–61.
    • (2007) Clin Trials , vol.4 , Issue.2 , pp. 154-161
    • Burton, A.1    Billingham, L.J.2    Bryan, S.3
  • 33
    • 79953732420 scopus 로고    scopus 로고
    • Multivariate imputation by chained equations in R
    • Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1–67.
    • (2011) J Stat Softw , vol.45 , Issue.3 , pp. 1-67
    • Buuren, S.1    Groothuis-Oudshoorn, K.M.I.C.E.2
  • 34
    • 2442686638 scopus 로고    scopus 로고
    • Regression methods for covariate adjustment and subgroup analysis for non-censored cost-effectiveness data
    • PID: 15127426
    • Willan AR, Briggs AH, Hoch JS. Regression methods for covariate adjustment and subgroup analysis for non-censored cost-effectiveness data. Health Econ. 2004;13(5):461–75.
    • (2004) Health Econ , vol.13 , Issue.5 , pp. 461-475
    • Willan, A.R.1    Briggs, A.H.2    Hoch, J.S.3
  • 35
    • 21344497888 scopus 로고
    • Missing data, imputation, and the bootstrap
    • Efron B. Missing data, imputation, and the bootstrap. J Am Stat Assoc. 1994;89(426):463–75.
    • (1994) J Am Stat Assoc , vol.89 , Issue.426 , pp. 463-475
    • Efron, B.1
  • 37
    • 84863457272 scopus 로고    scopus 로고
    • Strategy for modelling non-random missing data mechanisms in observational studies using Bayesian methods
    • Mason A, Richardson S, Plewis I, Best N. Strategy for modelling non-random missing data mechanisms in observational studies using Bayesian methods. J Off Stat. 2012;28(2):279–302.
    • (2012) J Off Stat , vol.28 , Issue.2 , pp. 279-302
    • Mason, A.1    Richardson, S.2    Plewis, I.3    Best, N.4
  • 38
    • 34347398256 scopus 로고    scopus 로고
    • Sensitivity analysis after multiple imputation under missing at random: a weighting approach
    • PID: 17621471
    • Carpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Stat Methods Med Res. 2007;16(3):259–75.
    • (2007) Stat Methods Med Res , vol.16 , Issue.3 , pp. 259-275
    • Carpenter, J.R.1    Kenward, M.G.2    White, I.R.3
  • 39
    • 84887444688 scopus 로고    scopus 로고
    • Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models
    • PID: 23292975
    • Ratitch B, O’Kelly M, Tosiello R. Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models. Pharmaceutical statistics. 2013;12(6):337–47.
    • (2013) Pharmaceutical statistics , vol.12 , Issue.6 , pp. 337-347
    • Ratitch, B.1    O’Kelly, M.2    Tosiello, R.3
  • 40
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • PID: 10204197
    • Van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med. 1999;18(6):681–94.
    • (1999) Stat Med , vol.18 , Issue.6 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 41
    • 84878989979 scopus 로고    scopus 로고
    • REFLUX Trial Group. Clinical and economic evaluation of laparoscopic surgery compared with medical management for gastro-oesophageal reflux disease—five-year follow-up of multicentre randomised trial (the REFLUX trial)
    • Grant A, Boachie C, Cotton S, Faria R, Bojke L, Epstein D, et al.; REFLUX Trial Group. Clinical and economic evaluation of laparoscopic surgery compared with medical management for gastro-oesophageal reflux disease—five-year follow-up of multicentre randomised trial (the REFLUX trial). Health Technol Assess. 2013;17(22):1–167.
    • (2013) Health Technol Assess , vol.17 , Issue.22 , pp. 1-167
    • Grant, A.1    Boachie, C.2    Cotton, S.3    Faria, R.4    Bojke, L.5    Epstein, D.6
  • 43
    • 75649095172 scopus 로고    scopus 로고
    • Analysis of incomplete data using inverse probability weighting and doubly robust estimators
    • Vansteelandt S, Carpenter J, Kenward MG. Analysis of incomplete data using inverse probability weighting and doubly robust estimators. Methodol Eur J Res Methods Behav Soc Sci. 2010;6(1):37–48.
    • (2010) Methodol Eur J Res Methods Behav Soc Sci , vol.6 , Issue.1 , pp. 37-48
    • Vansteelandt, S.1    Carpenter, J.2    Kenward, M.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.