-
1
-
-
0031356152
-
Nearly linear time approximation schemes for Euclidean TSP and other geometric problems
-
[Ar97]
-
[Ar97] S. Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. In: Proc. 38th IEEE FOCS, 1997, pp. 554-563.
-
(1997)
Proc. 38th IEEE FOCS
, pp. 554-563
-
-
Arora, S.1
-
2
-
-
0032156828
-
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
-
[Ar98]
-
[Ar98] S. Arora: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. In: Journal of the ACM 45, No. 5 (Sep. 1998), pp. 753-782.
-
(1998)
Journal of the ACM
, vol.45
, Issue.5
, pp. 753-782ß
-
-
Arora, S.1
-
3
-
-
0002982976
-
Performance guarantees for approximation algorithms depending on parametrized triangle inequalities
-
[AB95]
-
[AB95] T. Andreae, H.-J. Bandelt: Performance guarantees for approximation algorithms depending on parametrized triangle inequalities. SIAM J. Discr. Math. 8 (1995), pp. 1-16.
-
(1995)
SIAM J. Discr. Math.
, vol.8
, pp. 1-16
-
-
Andreae, T.1
Bandelt, H.-J.2
-
5
-
-
84912067602
-
Performance guarantees for the TSP with a parameterized triangle inequality
-
to appear. [BC99]
-
[BC99] M. A. Bender, C. Chekuri: Performance guarantees for the TSP with a parameterized triangle inequality. In: Proc. WADS'99, LNC'S, to appear.
-
Proc. WADS'99, LNC'S
-
-
Bender, M.A.1
Chekuri, C.2
-
6
-
-
85086054305
-
An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms for the TSP with Sharpened Triangle Inequality (Extended Abstract)
-
to appear. [BHKSU00]
-
[BHKSU00] H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, W. Unger: An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms for the TSP with Sharpened Triangle Inequality (Extended Abstract). In: Proc. STACS'00, LNCS, to appear.
-
Proc. STACS'00, LNCS
-
-
Böckenhauer, H.-J.1
Hromkovič, J.2
Klasing, R.3
Seibert, S.4
Unger, W.5
-
8
-
-
85059770931
-
The complexity of theorem proving procedures
-
[Co71]
-
[Co71] S. A. Cook: The complexity of theorem proving procedures. In: Proc. 3rd ACM STOC, ACM 1971, pp. 151-158.
-
Proc. 3rd ACM STOC, ACM 1971
, pp. 151-158
-
-
Cook, S.A.1
-
11
-
-
84957089132
-
An explicit lower bound for TSP with distances one and two. Extended abstract
-
Springer Full version in: Electronic Colloquium on Computational Complexity, Report TR98-046 (1999). [En99]
-
[En99] L. Engebretsen: An explicit lower bound for TSP with distances one and two. Extended abstract in: Proc. STACS'99, LNCS 1563, Springer 1999, pp. 373-382. Full version in: Electronic Colloquium on Computational Complexity, Report TR98-046 (1999).
-
(1999)
Proc. STACS'99, LNCS 1563
, pp. 373-382
-
-
Engebretsen, L.1
-
13
-
-
0030671781
-
Some optimal inapproximability results. Extended abstract
-
Full version in: Electronic Colloquium on Computational Complexity, Report TR97-037, (1999). [Hå97]
-
[Hå97] J. Håstad: Some optimal inapproximability results. Extended abstract in: Proc. 29th ACM STOC, ACM 1997, pp. 1-10. Full version in: Electronic Colloquium on Computational Complexity, Report TR97-037, (1999).
-
Proc. 29th ACM STOC, ACM 1997
, pp. 1-10
-
-
Håstad, J.1
-
16
-
-
0016560084
-
Fast approximation algorithms for the knapsack and sum of subsets problem
-
[IK75]
-
[IK75] O. H. Ibarra, C. E. Kim: Fast approximation algorithms for the knapsack and sum of subsets problem. J. of the ACM 22 (1975), pp. 463-468.
-
(1975)
J. of the ACM
, vol.22
, pp. 463-468
-
-
Ibarra, O.H.1
Kim, C.E.2
-
17
-
-
0016349356
-
Approximation algorithms for combinatorial problems
-
[Jo74]
-
[Jo74] D. S. Johnson: Approximation algorithms for combinatorial problems. JCSS 9 (1974), pp. 256-278.
-
(1974)
JCSS
, vol.9
, pp. 256-278
-
-
Johnson, D.S.1
-
18
-
-
0000203509
-
On the ratio of the optimal integral and functional covers
-
[Lo75]
-
[Lo75] L. Lovász: On the ratio of the optimal integral and functional covers. Discrete Mathematics 13 (1975), pp. 383-390.
-
(1975)
Discrete Mathematics
, vol.13
, pp. 383-390
-
-
Lovász, L.1
-
22
-
-
19044391501
-
The Euclidean traveling salesman problem is NP- complete
-
[Pa77]
-
[Pa77] Ch. Papadimitriou: The Euclidean traveling salesman problem is NP- complete. Theoretical Computer Science 4 (1977), pp. 237-244.
-
(1977)
Theoretical Computer Science 4
, pp. 237-244
-
-
Papadimitriou, C.1
|