메뉴 건너뛰기




Volumn 263, Issue , 2014, Pages 171-192

A minimum description length technique for semi-supervised time series classification

Author keywords

MDL; Semi supervised learning; Stopping criterion; Time series

Indexed keywords

TIME SERIES;

EID: 84912120608     PISSN: 21945357     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-04717-1_8     Document Type: Article
Times cited : (15)

References (45)
  • 1
    • 0035875343 scopus 로고    scopus 로고
    • GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions
    • Besemer, J., Lomsadze, A., Borodovsky,M.: GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29(12), 2607-2618 (2001)
    • (2001) Nucleic Acids Res. , vol.29 , Issue.12 , pp. 2607-2618
    • Besemer, J.1    Lomsadze, A.2    Borodovsky, M.3
  • 3
    • 37249021969 scopus 로고    scopus 로고
    • Semantic segmentation of motion capture using Laban movement analysis
    • Springer, Heidelberg
    • Bouchard, D., Badler, N.: Semantic segmentation of motion capture using Laban movement analysis. In: Intelligent Virtual Agents, pp. 37-44. Springer, Heidelberg (2007)
    • (2007) Intelligent Virtual Agents , pp. 37-44
    • Bouchard, D.1    Badler, N.2
  • 5
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ECG morphology and heartbeat interval features
    • Chazal, P.D., O'Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51, 1196-1206 (2004)
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 1196-1206
    • Chazal, P.D.1    O'Dwyer, M.2    Reilly, R.B.3
  • 6
    • 84964561483 scopus 로고    scopus 로고
    • DTW-D: Time series semi-supervised learning from a single example
    • Chen, Y., Hu, B., Keogh, E., Batista, G.E.: DTW-D: time series semi-supervised learning from a single example. In: The 19th ACM SIGKDD, pp. 383-391 (2013)
    • (2013) The 19th ACM SIGKDD , pp. 383-391
    • Chen, Y.1    Hu, B.2    Keogh, E.3    Batista, G.E.4
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1-30 (2006)
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 8
    • 36849045249 scopus 로고    scopus 로고
    • Semi-supervised classification with hybrid generative/ discriminative methods
    • Druck, G., Pal, C., Zhu, X., McCallum, A.: Semi-supervised classification with hybrid generative/ discriminative methods. In: The 13th ACM SIGKDD (2007)
    • (2007) The 13th ACM SIGKDD
    • Druck, G.1    Pal, C.2    Zhu, X.3    McCallum, A.4
  • 11
    • 14844283547 scopus 로고    scopus 로고
    • PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
    • Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215-220 (2000)
    • (2000) Circulation , vol.101 , Issue.23 , pp. 215-220
    • Goldberger, A.L.1
  • 12
  • 17
    • 84857158294 scopus 로고    scopus 로고
    • Discovering the intrinsic cardinality and dimensionality of time series using MDL
    • Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.: Discovering the intrinsic cardinality and dimensionality of time series using MDL. In: Proceedings of ICDM, pp. 1086-1091 (2011)
    • (2011) Proceedings of ICDM , pp. 1086-1091
    • Hu, B.1    Rakthanmanon, T.2    Hao, Y.3    Evans, S.4    Lonardi, S.5    Keogh, E.6
  • 18
    • 0030461734 scopus 로고    scopus 로고
    • Calculating regional climatic time series for temperature and precipitation: Methods and illustrations
    • Jones, P.D., Hulme, M.: Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int. J. Climatol. 16(4), 361-377 (1996)
    • (1996) Int. J. Climatol. , vol.16 , Issue.4 , pp. 361-377
    • Jones, P.D.1    Hulme, M.2
  • 21
    • 79957848984 scopus 로고    scopus 로고
    • Co-training for predicting emotions with spoken dialogue data
    • Maeireizo, B., Litman, D., Hwa, R.: Co-training for predicting emotions with spoken dialogue data. In: Proceedings of ACL (2004)
    • (2004) Proceedings of ACL
    • Maeireizo, B.1    Litman, D.2    Hwa, R.3
  • 24
    • 85006546426 scopus 로고    scopus 로고
    • Positive unlabeled learning for time series classification
    • Nguyen, M.N., Li, X.L., Ng, S.K.: Positive unlabeled learning for time series classification. In: Proceedings of AAAI (2011)
    • (2011) Proceedings of AAAI
    • Nguyen, M.N.1    Li, X.L.2    Ng, S.K.3
  • 27
    • 67650687582 scopus 로고    scopus 로고
    • Copula-based models for financial time series
    • Andersen, T.G., Davis, R.A., Kreiss, J-P., Mikosch, T. (eds.) Springer, Heidelberg
    • Patton, A.J.: Copula-based models for financial time series. In: Andersen, T.G., Davis, R.A., Kreiss, J-P., Mikosch, T. (eds.) Handbook of Financial Time Series, pp. 767-785. Springer, Heidelberg (2009)
    • (2009) Handbook of Financial Time Series , pp. 767-785
    • Patton, A.J.1
  • 28
    • 83455174303 scopus 로고    scopus 로고
    • Large-Scale Human Activity Recognition Using Ultra-Dense Sensing
    • National Academy of Engineering, Winter
    • Philipose, M.: Large-Scale Human Activity Recognition Using Ultra-Dense Sensing. The Bridge, vol. 35, issue 4. National Academy of Engineering, Winter (2005)
    • (2005) The Bridge , vol.35 , Issue.4
    • Philipose, M.1
  • 30
    • 84857163510 scopus 로고    scopus 로고
    • Time series epenthesis: Clustering time series streams requires ignoring some data
    • Rakthanmanon, T., Keogh, E., Lonardi, S., Evans, S.: Time series epenthesis: clustering time series streams requires ignoring some data. In: Proceedings of ICDM (2011)
    • (2011) Proceedings of ICDM
    • Rakthanmanon, T.1    Keogh, E.2    Lonardi, S.3    Evans, S.4
  • 32
    • 2942525700 scopus 로고    scopus 로고
    • Making time-series classification more accurate using learned constraints
    • Ratanamahatana, C.A., Keogh, E.: Making time-series classification more accurate using learned constraints. In: Proceedings of SIAM SDM (2004)
    • (2004) Proceedings of SIAM SDM
    • Ratanamahatana, C.A.1    Keogh, E.2
  • 35
    • 0031213979 scopus 로고    scopus 로고
    • An ECG classifier designed using modified decision based neural networks
    • Simon, B.P., Eswaran, C.: An ECG classifier designed using modified decision based neural networks. Comput. Biomed. Res. 30(4), 257-272 (1997)
    • (1997) Comput. Biomed. Res. , vol.30 , Issue.4 , pp. 257-272
    • Simon, B.P.1    Eswaran, C.2
  • 37
    • 84898937812 scopus 로고    scopus 로고
    • Bayesian time series classification
    • Jordan, M., Reams, M., Solla, S. (eds.) MIT Press, Cambridge
    • Sykacek, P., Roberts, S.J.: Bayesian time series classification. In: Jordan, M., Reams, M., Solla, S. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (2002)
    • (2002) Advances in Neural Information Processing Systems.
    • Sykacek, P.1    Roberts, S.J.2
  • 38
    • 78149339079 scopus 로고    scopus 로고
    • Rule discovery in large time-series medical databases
    • Zytkow, J., Rauch, J. (eds.) Springer, Heidelberg
    • Tsumoto, S.: Rule discovery in large time-series medical databases. In: In: Zytkow, J., Rauch, J. (eds.) Principles of Data Mining and Knowledge Discovery, pp. 23-31. Springer, Heidelberg (1999)
    • (1999) Principles of Data Mining and Knowledge Discovery , pp. 23-31
    • Tsumoto, S.1
  • 40
    • 84872397385 scopus 로고    scopus 로고
    • Experimental comparison of representation methods and distance measures for time series data
    • Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2), 275-309 (2013)
    • (2013) Data Min. Knowl. Discov. , vol.26 , Issue.2 , pp. 275-309
    • Wang, X.1    Mueen, A.2    Ding, H.3    Trajcevski, G.4    Scheuermann, P.5    Keogh, E.J.6
  • 41
    • 33749571730 scopus 로고    scopus 로고
    • Semi-supervised time series classification
    • Wei, L., Keogh, E.: Semi-supervised time series classification. In: Proceedings of SIGKDD (2006)
    • (2006) Proceedings of SIGKDD
    • Wei, L.1    Keogh, E.2
  • 43
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of ACL (1995)
    • (1995) Proceedings of ACL
    • Yarowsky, D.1
  • 44
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report No. 1530. Computer Sciences, University of Wisconsin-Madison
    • Zhu, X.: Semi-supervised Learning Literature Survey. Technical Report No. 1530. Computer Sciences, University of Wisconsin-Madison (2005)
    • (2005) Semi-supervised Learning Literature Survey
    • Zhu, X.1
  • 45
    • 85006524246 scopus 로고    scopus 로고
    • http://www.cs.ucr.edu/~nbegu001/SSL_myMDL.htm


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.