메뉴 건너뛰기




Volumn 25, Issue 6, 2014, Pages 1403-1411

Online incremental learning for tool condition classification using modified Fuzzy ARTMAP network

Author keywords

Incremental learning; Modified Fuzzy ARTMAP; Online; Tool condition monitoring

Indexed keywords

CONDITION MONITORING; CUTTING TOOLS; FUZZY NEURAL NETWORKS; LEARNING SYSTEMS; TITANIUM ALLOYS;

EID: 84912008946     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-013-0738-x     Document Type: Article
Times cited : (14)

References (21)
  • 2
    • 79957439082 scopus 로고    scopus 로고
    • Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
    • Boutros, T., & Liang, M. (2011). Detection and diagnosis of bearing and cutting tool faults using hidden Markov models. Mechanical System and Signal Processing, 25(6), 2102–2124.
    • (2011) Mechanical System and Signal Processing , vol.25 , Issue.6 , pp. 2102-2124
    • Boutros, T.1    Liang, M.2
  • 3
    • 84862289855 scopus 로고    scopus 로고
    • Tool wear estimation using an analytic fuzzy classifier and support vector machines
    • Brezak, D., Majetic, D., Udiljak, T., & Kasac, J. (2012). Tool wear estimation using an analytic fuzzy classifier and support vector machines. Journal of Intelligent Manufacturing, 23(3), 797–809.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , Issue.3 , pp. 797-809
    • Brezak, D.1    Majetic, D.2    Udiljak, T.3    Kasac, J.4
  • 4
    • 0000081426 scopus 로고
    • Tool condition monitoring in metal cutting: A neural network approach
    • Burke, L., & Rangwala, S. (1991). Tool condition monitoring in metal cutting: A neural network approach. Journal of Intelligent Manufacturing, 2(5), 269–280.
    • (1991) Journal of Intelligent Manufacturing , vol.2 , Issue.5 , pp. 269-280
    • Burke, L.1    Rangwala, S.2
  • 6
    • 54249084467 scopus 로고    scopus 로고
    • Supervised incremental learning with the fuzzy ARTMAP neural network. ANNPR ’08 Proceedings of the 3rd IAPR workshop on artificial neural networks in pattern recognition (pp. 66–77)
    • Connolly, J. F., Granger, E., & Sabourin, R. (2008). Supervised incremental learning with the fuzzy ARTMAP neural network. ANNPR ’08 Proceedings of the 3rd IAPR workshop on artificial neural networks in pattern recognition (pp. 66–77). Berlin.
    • (2008) Berlin
    • Connolly, J.F.1    Granger, E.2    Sabourin, R.3
  • 7
    • 0031235710 scopus 로고    scopus 로고
    • Neural network solutions to the tool condition monitoring problem in metal cutting—a critical review of methods
    • Dimla, D. E., Jr., Lister, P. M., & Leighton, N. J. (1997). Neural network solutions to the tool condition monitoring problem in metal cutting—a critical review of methods. International Journal of Machine Tools and Manufacture, 37(9), 1219–1241.
    • (1997) International Journal of Machine Tools and Manufacture , vol.37 , Issue.9 , pp. 1219-1241
    • Dimla, D.E.1    Lister, P.M.2    Leighton, N.J.3
  • 8
    • 0032184390 scopus 로고    scopus 로고
    • Diagnosis of tool wear based on cutting forces and acoustic emission measures as inputs to a neural network
    • Jemielniak, K., Kwiatkowski, L., & Wrzosek, P. (1998). Diagnosis of tool wear based on cutting forces and acoustic emission measures as inputs to a neural network. Journal of Intelligent Manufacturing, 9(5), 447–455.
    • (1998) Journal of Intelligent Manufacturing , vol.9 , Issue.5 , pp. 447-455
    • Jemielniak, K.1    Kwiatkowski, L.2    Wrzosek, P.3
  • 9
    • 0033104456 scopus 로고    scopus 로고
    • Multi-sensor integration for on-line toolwear estimation through radialbasisfunction networks and fuzzy neural network
    • Kuo, R. J., & Cohen, P. H. (1999). Multi-sensor integration for on-line toolwear estimation through radialbasisfunction networks and fuzzy neural network. Neural Networks, 12(2), 355–370.
    • (1999) Neural Networks , vol.12 , Issue.2 , pp. 355-370
    • Kuo, R.J.1    Cohen, P.H.2
  • 10
    • 80055015194 scopus 로고    scopus 로고
    • Applications of simplified fuzzy ARTMAP to partial discharge classification and pattern recognition
    • Marungsri, B., & Boonpoke, S. (2011). Applications of simplified fuzzy ARTMAP to partial discharge classification and pattern recognition. Wseas Transactions on Systems, 10(3), 69–80.
    • (2011) Wseas Transactions on Systems , vol.10 , Issue.3 , pp. 69-80
    • Marungsri, B.1    Boonpoke, S.2
  • 11
    • 33845220150 scopus 로고    scopus 로고
    • Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness
    • Orhan, S., Er, A. O., Camuscu, N., & Aslan, E. (2007). Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness. NDT & E International, 40(2), 121–126.
    • (2007) NDT & E International , vol.40 , Issue.2 , pp. 121-126
    • Orhan, S.1    Er, A.O.2    Camuscu, N.3    Aslan, E.4
  • 13
    • 78650179604 scopus 로고    scopus 로고
    • Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns
    • Purushothaman, S. (2010). Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns. Journal of Intelligent Manufacturing, 21(6), 717–730.
    • (2010) Journal of Intelligent Manufacturing , vol.21 , Issue.6 , pp. 717-730
    • Purushothaman, S.1
  • 15
    • 78650175926 scopus 로고    scopus 로고
    • Condition monitoring of the cutting process using a self-organizing spiking neural network map
    • Silva, R. G. (2010). Condition monitoring of the cutting process using a self-organizing spiking neural network map. Journal of Intelligent Manufacturing, 21(6), 823–829.
    • (2010) Journal of Intelligent Manufacturing , vol.21 , Issue.6 , pp. 823-829
    • Silva, R.G.1
  • 16
    • 84862197081 scopus 로고    scopus 로고
    • An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring
    • Tian, Z. G. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227–237.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , Issue.2 , pp. 227-237
    • Tian, Z.G.1
  • 17
  • 18
    • 84888642906 scopus 로고    scopus 로고
    • On line tool wear monitoring based on auto associative neural network
    • Wang, G. F., & Cui, Y. H. (2012). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-012-0636-7.
    • (2012) Journal of Intelligent Manufacturing
    • Wang, G.F.1    Cui, Y.H.2
  • 20
    • 0345533936 scopus 로고    scopus 로고
    • An investigation of indices based on milling force for tool wear in milling
    • Yan, W., Wong, Y. S., Lee, K. S., & Ning, T. (1999). An investigation of indices based on milling force for tool wear in milling. Journal of Materials Processing Technology, 89–90, 245–253.
    • (1999) Journal of Materials Processing Technology , vol.89-90 , pp. 245-253
    • Yan, W.1    Wong, Y.S.2    Lee, K.S.3    Ning, T.4
  • 21
    • 64449086323 scopus 로고    scopus 로고
    • Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results
    • Zhu, K. P., Wong, Y. S., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools & Manufacture, 49(7–8), 537–553.
    • (2009) International Journal of Machine Tools & Manufacture , vol.49 , Issue.7-8 , pp. 537-553
    • Zhu, K.P.1    Wong, Y.S.2    Hong, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.