-
1
-
-
34250577382
-
A generalization of a lemma of bellman and its application to uniqueness problems of differential equations
-
Bihari, I. A generalization of a lemma of bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hungar., 7: 81–94 (1956)
-
(1956)
Acta Math. Acad. Sci. Hungar.
, vol.7
, pp. 81-94
-
-
Bihari, I.1
-
2
-
-
78651408734
-
Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths
-
Denis, L., Hu, M., Peng, S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal., 34(2): 139–161 (2011)
-
(2011)
Potential Anal.
, vol.34
, Issue.2
, pp. 139-161
-
-
Denis, L.1
Hu, M.2
Peng, S.3
-
3
-
-
21644489601
-
A study of a class of stochastic differential equations with non-Lipschitzian coefficients
-
Fang, S., Zhang, T. A study of a class of stochastic differential equations with non-Lipschitzian coefficients. Probab. Theory Related Fields, 132(3): 356–390 (2005)
-
(2005)
Probab. Theory Related Fields
, vol.132
, Issue.3
, pp. 356-390
-
-
Fang, S.1
Zhang, T.2
-
4
-
-
69749114968
-
Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion
-
Gao, F. Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Process. Appl., 119(10): 3356–3382 (2009)
-
(2009)
Stochastic Process. Appl.
, vol.119
, Issue.10
, pp. 3356-3382
-
-
Gao, F.1
-
5
-
-
84885663269
-
Backward stochastic differential equations driven by G-Brownian motion
-
Hu, M., Ji, S., Peng, S., Song, Y. Backward stochastic differential equations driven by G-Brownian motion. Stochastic Process. Appl., 124(1): 759–784 (2014)
-
(2014)
Stochastic Process. Appl.
, vol.124
, Issue.1
, pp. 759-784
-
-
Hu, M.1
Ji, S.2
Peng, S.3
Song, Y.4
-
6
-
-
0037907684
-
On the existence and uniqueness of solutions to stochastic equations in infinite dimension with integral-Lipschitz coefficients
-
Hu, Y., Lerner, N. On the existence and uniqueness of solutions to stochastic equations in infinite dimension with integral-Lipschitz coefficients. J. Math. Kyoto Univ., 42(3): 579–598 (2002)
-
(2002)
J. Math. Kyoto Univ.
, vol.42
, Issue.3
, pp. 579-598
-
-
Hu, Y.1
Lerner, N.2
-
7
-
-
79956213185
-
Stopping times and related Itô’s calculus with G-Brownian motion
-
Li, X., Peng, S. Stopping times and related Itô’s calculus with G-Brownian motion. Stochastic Process. Appl., 121(7): 1492–1508 (2011)
-
(2011)
Stochastic Process. Appl.
, vol.121
, Issue.7
, pp. 1492-1508
-
-
Li, X.1
Peng, S.2
-
8
-
-
84876119654
-
Some properties of stochastic differential equations driven by the G-Brownian motion
-
Lin, Q. Some properties of stochastic differential equations driven by the G-Brownian motion. Acta Math. Appl. Sinica (English Ser.), 29(5): 923–942 (2013)
-
(2013)
Acta Math. Appl. Sinica (English Ser.)
, vol.29
, Issue.5
, pp. 923-942
-
-
Lin, Q.1
-
9
-
-
84883606894
-
G-expectation, G-Brownian motion and related stochastic calculus of Itô type
-
Benth FE, Nunno G, Lindstrom T, Øksendal B, Zhang T, (eds), Springer-Verlag, Berlin:
-
Peng, S. G-expectation, G-Brownian motion and related stochastic calculus of Itô type. In: Stochastic analysis and applications, Abel Symp., Vol.2, ed. by F.E., Benth, G. Di Nunno, T. Lindstrom, B. Øksendal, T. Zhang, Springer-Verlag, Berlin, 2007, 541–567
-
(2007)
Stochastic analysis and applications, Abel Symp., Vol.2
, pp. 541-567
-
-
Peng, S.1
-
10
-
-
84911466810
-
-
Peng, S. Nonlinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1
-
Peng, S. Nonlinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1
-
-
-
-
11
-
-
84911476623
-
-
Peng, S., Song, Y., Zhang, J. A complete representation theorem for G-martingales. arXiv:1201.2629v2
-
Peng, S., Song, Y., Zhang, J. A complete representation theorem for G-martingales. arXiv:1201.2629v2
-
-
-
-
12
-
-
0004267646
-
-
Princeton University Press, Princeton, N.J.:
-
Rockafellar, R. T. Convex analysis. Princeton University Press, Princeton, N.J., 1970
-
(1970)
Convex analysis
-
-
Rockafellar, R.T.1
-
13
-
-
78650272306
-
Martingale representation theorem under G-expectation
-
Soner, H. M., Touzi, N., Zhang, J. Martingale representation theorem under G-expectation. Stochastic Process. Appl., 121(2): 265–287 (2011)
-
(2011)
Stochastic Process. Appl.
, vol.121
, Issue.2
, pp. 265-287
-
-
Soner, H.M.1
Touzi, N.2
Zhang, J.3
-
14
-
-
79952360443
-
Some properties on G-evaluation and its applications to G-martingale decomposition
-
Song, Y. Some properties on G-evaluation and its applications to G-martingale decomposition. Sci. China Math., 54(2): 287–300 (2011)
-
(2011)
Sci. China Math.
, vol.54
, Issue.2
, pp. 287-300
-
-
Song, Y.1
-
15
-
-
84859070856
-
Uniqueness of the representation for G-martingales with finite variation
-
Song, Y. Uniqueness of the representation for G-martingales with finite variation. Electron. J. Probab., 17(24): 1–15 (2012)
-
(2012)
Electron. J. Probab.
, vol.17
, Issue.24
, pp. 1-15
-
-
Song, Y.1
-
16
-
-
0008215982
-
On the uniqueness of solutions of stochastic differential equations II
-
Watanabe, S., Yamada, T. On the uniqueness of solutions of stochastic differential equations II. J. Math. Kyoto Univ., 11: 553–563 (1971)
-
(1971)
J. Math. Kyoto Univ.
, vol.11
, pp. 553-563
-
-
Watanabe, S.1
Yamada, T.2
-
17
-
-
57149113777
-
Martingale characterization of G-Brownian motion
-
Xu, J., Zhang, B. Martingale characterization of G-Brownian motion. Stochastic Process. Appl., 119(1): 232–248 (2009)
-
(2009)
Stochastic Process. Appl.
, vol.119
, Issue.1
, pp. 232-248
-
-
Xu, J.1
Zhang, B.2
-
18
-
-
0000313984
-
On the successive approximation of solutions of stochastic differential equations
-
Yamada, T. On the successive approximation of solutions of stochastic differential equations. J. Math. Kyoto Univ., 21(3): 501–515 (1981)
-
(1981)
J. Math. Kyoto Univ.
, vol.21
, Issue.3
, pp. 501-515
-
-
Yamada, T.1
-
19
-
-
0000827166
-
On the uniqueness of solutions of stochastic differential equations
-
Yamada, T., Watanabe, S. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ., 11: 155–167 (1971)
-
(1971)
J. Math. Kyoto Univ.
, vol.11
, pp. 155-167
-
-
Yamada, T.1
Watanabe, S.2
|