메뉴 건너뛰기




Volumn , Issue , 2014, Pages 5060-5063

Application of statistical and machine learning models for grassland yield estimation based on a hypertemporal satellite remote sensing time series

Author keywords

ANFIS; ANN; biomass prediction; Grassland; MODIS time series

Indexed keywords

AGRICULTURE; BIOMASS; DECISION SUPPORT SYSTEMS; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; LAND USE; LEARNING SYSTEMS; LINEAR REGRESSION; RADIOMETERS; TIME SERIES; VEGETATION;

EID: 84911430341     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2014.6947634     Document Type: Conference Paper
Times cited : (28)

References (16)
  • 1
    • 84911391084 scopus 로고    scopus 로고
    • [Accessed 13-May-2014]
    • FAO, "What are grasslands and rangelands?," http://www.fao.org/agriculture/crops/core-themes/theme/spi/scpi-home/managing-ecosystems/management-of-grasslands-and-rangelands/grasslands-what/en/, [Accessed 13-May-2014].
    • What Are Grasslands and Rangelands?
  • 2
    • 0031747963 scopus 로고    scopus 로고
    • The global carbon sink: A grassland perspective
    • J. M. O. Scurlock and D. O. Hall, "The global carbon sink: a grassland perspective," Global Change Biology, Vol. 4, no. 2, pp. 229-233, 1998.
    • (1998) Global Change Biology , vol.4 , Issue.2 , pp. 229-233
    • Scurlock, J.M.O.1    Hall, D.O.2
  • 3
    • 35948982488 scopus 로고    scopus 로고
    • Carbon sequestration and rangelands: A synthesis of land management and precipitation effects
    • Mar.
    • J. D. Derner and G. E. Schuman, "Carbon sequestration and rangelands: A synthesis of land management and precipitation effects," Journal of Soil and Water Conservation, Vol. 62, no. 2, pp. 77-85, Mar. 2007.
    • (2007) Journal of Soil and Water Conservation , vol.62 , Issue.2 , pp. 77-85
    • Derner, J.D.1    Schuman, G.E.2
  • 8
    • 84872566022 scopus 로고    scopus 로고
    • Simulation of grassland productivity by the combination of ground and satellite data
    • Jan.
    • F. Maselli, G. Argenti, M. Chiesi, L. Angeli, and D. Papale, "Simulation of grassland productivity by the combination of ground and satellite data," Agriculture, Ecosystems & Environment, Vol. 165, pp. 163-172, Jan. 2013.
    • (2013) Agriculture, Ecosystems & Environment , vol.165 , pp. 163-172
    • Maselli, F.1    Argenti, G.2    Chiesi, M.3    Angeli, L.4    Papale, D.5
  • 9
    • 66149165735 scopus 로고    scopus 로고
    • A comparison of two models with landsat data for estimating above ground grassland biomass in Inner Mongolia, China
    • Aug.
    • Yichun Xie, Zongyao Sha, Mei Yu, Yongfei Bai, and Lei Zhang, "A comparison of two models with landsat data for estimating above ground grassland biomass in inner mongolia, china," Ecological Modelling, Vol. 220, no. 15, pp. 1810-1818, Aug. 2009.
    • (2009) Ecological Modelling , vol.220 , Issue.15 , pp. 1810-1818
    • Xie, Y.1    Sha, Z.2    Yu, M.3    Bai, Y.4    Zhang, L.5
  • 10
    • 84860650702 scopus 로고    scopus 로고
    • On grass yield remote sensing estimation models of Chinas Northern farming-pastoral ecotone
    • Gary Lee, Ed., number 142 in Advances in Intelligent and Soft Computing Springer Berlin Heidelberg, Jan.
    • Xiuchun Yang, Bin Xu, Jin Yunxiang, Li Jinya, and Xiaohua Zhu, "On grass yield remote sensing estimation models of chinas northern farming-pastoral ecotone," in Advances in Computational Environment Science, Gary Lee, Ed., number 142 in Advances in Intelligent and Soft Computing, pp. 281-291. Springer Berlin Heidelberg, Jan. 2012.
    • (2012) Advances in Computational Environment Science , pp. 281-291
    • Yang, X.1    Xu, B.2    Yunxiang, J.3    Jinya, L.4    Zhu, X.5
  • 11
    • 35649014937 scopus 로고    scopus 로고
    • Prediction of bromate formation using multilinear regression and artificial neural networks
    • G. Civelekoglu, N.O. Yigit, E. Diamadopoulos, and M. Kitis, "Prediction of bromate formation using multilinear regression and artificial neural networks," Ozone: Science & Engineering, Vol. 29, no. 5, pp. 353-362, 2007.
    • (2007) Ozone: Science & Engineering , vol.29 , Issue.5 , pp. 353-362
    • Civelekoglu, G.1    Yigit, N.O.2    Diamadopoulos, E.3    Kitis, M.4
  • 13
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design, and application
    • Dec.
    • I. A Basheer and M Hajmeer, "Artificial neural networks: fundamentals, computing, design, and application," Journal of Microbiological Methods, Vol. 43, no. 1, pp. 3-31, Dec. 2000.
    • (2000) Journal of Microbiological Methods , vol.43 , Issue.1 , pp. 3-31
    • Basheer, A.I.1    Hajmeer, M.2
  • 14
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May
    • J.-S.R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, no. 3, pp. 665-685, May 1993.
    • (1993) IEEE Transactions on Systems, Man and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 15
    • 82855161415 scopus 로고    scopus 로고
    • ANN and ANFIS performance prediction models for hydraulic impact hammers
    • Jan.
    • Melih Iphar, "ANN and ANFIS performance prediction models for hydraulic impact hammers," Tunnelling and Underground Space Technology, Vol. 27, no. 1, pp. 23-29, Jan. 2012.
    • (2012) Tunnelling and Underground Space Technology , vol.27 , Issue.1 , pp. 23-29
    • Iphar, M.1
  • 16
    • 84891743345 scopus 로고    scopus 로고
    • Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system (ANFIS)
    • Nov.
    • Alireza Karami and Somaieh Afiuni-Zadeh, "Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system (ANFIS)," International Journal of Mining Science and Technology, Vol. 23, no. 6, pp. 809-813, Nov. 2013.
    • (2013) International Journal of Mining Science and Technology , vol.23 , Issue.6 , pp. 809-813
    • Karami, A.1    Afiuni-Zadeh, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.