메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3810-3817

Grassmann averages for scalable robust PCA

Author keywords

computer vision; directional statistics; Grassmann manifold; machine learning; PCA; Robust PCA; subspace estimation

Indexed keywords

DIMENSIONALITY REDUCTION; GENETIC ALGORITHMS; LARGE DATASET; LEARNING SYSTEMS; SCALABILITY; STATISTICS; VECTORS;

EID: 84911387568     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.481     Document Type: Conference Paper
Times cited : (63)

References (31)
  • 2
    • 0037328517 scopus 로고    scopus 로고
    • Lambertian reflectance and linear subspaces
    • R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. TPAMI, 25(2):218-233, 2003.
    • (2003) TPAMI , vol.25 , Issue.2 , pp. 218-233
    • Basri, R.1    Jacobs, D.2
  • 3
    • 0031651559 scopus 로고    scopus 로고
    • EigenTracking: Robust matching and tracking of articulated objects using a view-based representation
    • M. J. Black and A. D. Jepson. EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation. IJCV, 26:63-84, 1998.
    • (1998) IJCV , vol.26 , pp. 63-84
    • Black, M.J.1    Jepson, A.D.2
  • 7
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? ACM, 58(1):1-37, 2011.
    • (2011) ACM , vol.58 , Issue.1 , pp. 1-37
    • Candes, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 9
    • 0141742284 scopus 로고    scopus 로고
    • A framework for robust subspace learning
    • F. De la Torre and M. J. Black. A framework for robust subspace learning. IJCV, 54:117-142, 2003.
    • (2003) IJCV , vol.54 , pp. 117-142
    • De La Torre, F.1    Black, M.J.2
  • 10
    • 33749255817 scopus 로고    scopus 로고
    • 1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization
    • 1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. ICML, pp. 281-288, 2006.
    • (2006) ICML , pp. 281-288
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 11
    • 84867121825 scopus 로고    scopus 로고
    • Robust PCA in high-dimension: A deterministic approach
    • J. Feng, H. Xu, and S. Yan. Robust PCA in high-dimension: A deterministic approach. ICML, pp. 249-256, 2012.
    • (2012) ICML , pp. 249-256
    • Feng, J.1    Xu, H.2    Yan, S.3
  • 13
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. TPAMI, 23(6):643-660, 2001.
    • (2001) TPAMI , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 14
    • 0004236492 scopus 로고    scopus 로고
    • The Johns Hopkins University Press, 3rd edition, Oct.
    • G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 3rd edition, Oct. 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 17
    • 0000263797 scopus 로고
    • Projection pursuit
    • P. J. Huber. Projection pursuit. Annals of Statistics, 13(2):435-475, 1985.
    • (1985) Annals of Statistics , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 18
    • 84862748797 scopus 로고    scopus 로고
    • Robust video restoration by joint sparse and low rank matrix approximation
    • H. Ji, S. Huang, Z. Shen and Y. H. Xu. Robust video restoration by joint sparse and low rank matrix approximation. SI-IMS, 4(4):1122-1142, 2011.
    • (2011) SI-IMS , vol.4 , Issue.4 , pp. 1122-1142
    • Ji, H.1    Huang, S.2    Shen, Z.3    Xu, Y.H.4
  • 20
    • 48049103479 scopus 로고    scopus 로고
    • Principal component analysis based on l1-norm maximization
    • N. Kwak. Principal Component Analysis Based on L1-Norm Maximization. TPAMI, 30(9):1672-1680, 2008.
    • (2008) TPAMI , vol.30 , Issue.9 , pp. 1672-1680
    • Kwak, N.1
  • 23
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex backgrounds for foreground object detection
    • L. Li, W. Huang, I. Gu, and Q. Tian. Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process., 13(11):1459-1472, 2004.
    • (2004) IEEE Trans. Image Process , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.3    Tian, Q.4
  • 25
    • 85162438878 scopus 로고    scopus 로고
    • Divide-and-conquer matrix factorization
    • L.W. Mackey, A.S. Talwalkar and M.I. Jordan. Divide-and-Conquer Matrix Factorization. NIPS, pp. 1134-1142, 2011.
    • (2011) NIPS , pp. 1134-1142
    • MacKey, L.W.1    Talwalkar, A.S.2    Jordan, M.I.3
  • 27
    • 80052892123 scopus 로고    scopus 로고
    • Accelerated low-rank visual recovery by random projection
    • Y. Mu, J. Dong, X. Yuan and S. Yan. Accelerated low-rank visual recovery by random projection. CVPR, pp. 2609-2616, 2011.
    • (2011) CVPR , pp. 2609-2616
    • Mu, Y.1    Dong, J.2    Yuan, X.3    Yan, S.4
  • 28
    • 84898929664 scopus 로고    scopus 로고
    • EM algorithms for PCA and SPCA
    • S. T. Roweis. EM algorithms for PCA and SPCA. NIPS. pp. 626-323, 1998.
    • (1998) NIPS , pp. 626-323
    • Roweis, S.T.1
  • 29
    • 80052903772 scopus 로고    scopus 로고
    • Distributed computer vision algorithms through distributed averaging
    • R. Tron and R. Vidal. Distributed computer vision algorithms through distributed averaging. CVPR, pp. 57-63, 2011.
    • (2011) CVPR , pp. 57-63
    • Tron, R.1    Vidal, R.2
  • 30
    • 0029184173 scopus 로고
    • Robust principal component analysis by self-organizing rules based on statistical physics approach
    • L. Xu and A. L. Yuille. Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Trans. Neural Networks, 6(1):131-143, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 131-143
    • Xu, L.1    Yuille, A.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.