메뉴 건너뛰기




Volumn 258, Issue , 2015, Pages 61-78

Fuzzy-rough feature selection accelerator

Author keywords

Accelerator; Feature selection; Forward approximation; Fuzzy rough sets; Granular computing; Rough sets

Indexed keywords

ACCELERATION; ALGORITHMS; APPROXIMATION ALGORITHMS; DATA MINING; GRANULAR COMPUTING; HEURISTIC ALGORITHMS; HEURISTIC METHODS; NUMERICAL METHODS; PARTICLE ACCELERATORS; ROUGH SET THEORY; SET THEORY;

EID: 84911386411     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2014.04.029     Document Type: Article
Times cited : (139)

References (48)
  • 1
    • 0032137218 scopus 로고    scopus 로고
    • Information-theoretic measures of uncertainty for rough sets and rough relational databases
    • T. Beaubouef, F.E. Perty, G. Arora, Information-theoretic measures of uncertainty for rough sets and rough relational databases, Inf. Sci. 109 (1998) 185-195.
    • (1998) Inf. Sci. , vol.109 , pp. 185-195
    • Beaubouef, T.1    Perty, F.E.2    Arora, G.3
  • 2
    • 19944424801 scopus 로고    scopus 로고
    • On the compact computational domain of fuzzy-rough sets
    • R.B. Bhatt, M. Gopal, On the compact computational domain of fuzzy-rough sets, Pattern Recognit. Lett. 26 (2005) 1632-1640.
    • (2005) Pattern Recognit. Lett. , vol.26 , pp. 1632-1640
    • Bhatt, R.B.1    Gopal, M.2
  • 3
    • 80051989247 scopus 로고    scopus 로고
    • Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms
    • O. Boehm, D.R. Hardoon, L.M. Manevitz, Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms, Int. J. Mach. Learn. Cybern. 2(3) (2011) 125-134.
    • (2011) Int. J. Mach. Learn. Cybern. , vol.2 , Issue.3 , pp. 125-134
    • Boehm, O.1    Hardoon, D.R.2    Manevitz, L.M.3
  • 5
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • D. Dübois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (1990) 191-209.
    • (1990) Int. J. Gen. Syst. , vol.17 , pp. 191-209
    • Dübois, D.1    Prade, H.2
  • 6
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • I. Düntsch, G. Gediga, Uncertainty measures of rough set prediction, Artif. Intell. 106 (1998) 109-137.
    • (1998) Artif. Intell. , vol.106 , pp. 109-137
    • Düntsch, I.1    Gediga, G.2
  • 7
    • 0035501187 scopus 로고    scopus 로고
    • Rough approximation quality revisited
    • G. Gediga, I. Düntsch, Rough approximation quality revisited, Artif. Intell. 132 (2001) 219-234.
    • (2001) Artif. Intell. , vol.132 , pp. 219-234
    • Gediga, G.1    Düntsch, I.2
  • 8
    • 0032180332 scopus 로고    scopus 로고
    • Rough computational methods for information systems
    • J.W. Guan, D.A. Bell, Rough computational methods for information systems, Artif. Intell. 105 (1998) 77-103.
    • (1998) Artif. Intell. , vol.105 , pp. 77-103
    • Guan, J.W.1    Bell, D.A.2
  • 9
    • 0029310113 scopus 로고
    • Learning in relational databases: A rough set approach
    • X.H. Hu, N. Cercone, Learning in relational databases: a rough set approach, Int. J. Comput. Intell. 11(2) (1995) 323-338.
    • (1995) Int. J. Comput. Intell. , vol.11 , Issue.2 , pp. 323-338
    • Hu, X.H.1    Cercone, N.2
  • 10
    • 77955091406 scopus 로고    scopus 로고
    • Selecting discrete and continuous features based on neighborhood decisionerror minimization
    • Q. Hu, W. Pedrycz, D. Yu, J. Lang, Selecting discrete and continuous features based on neighborhood decisionerror minimization, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(1) (2010) 137-150.
    • (2010) IEEE Trans. Syst. Man Cybern., Part B, Cybern. , vol.40 , Issue.1 , pp. 137-150
    • Hu, Q.1    Pedrycz, W.2    Yu, D.3    Lang, J.4
  • 11
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Q. Hu, Z.X. Xie, D.R. Yu, Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation, Pattern Recognit. 40 (2007) 3509-3521.
    • (2007) Pattern Recognit. , vol.40 , pp. 3509-3521
    • Hu, Q.1    Xie, Z.X.2    Yu, D.R.3
  • 12
    • 80053240887 scopus 로고    scopus 로고
    • Kernelized fuzzy rough sets and their applications
    • Q. Hu, D. Yu, W. Pedrycz, D. Chen, Kernelized fuzzy rough sets and their applications, IEEE Trans. Knowl. Data Eng. 23(11) (2011) 1649-1667.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.11 , pp. 1649-1667
    • Hu, Q.1    Yu, D.2    Pedrycz, W.3    Chen, D.4
  • 13
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Q. Hu, D.R. Yu, Z.X. Xie, Information-preserving hybrid data reduction based on fuzzy-rough techniques, Pattern Recognit. Lett. 27(5) (2006) 414-423.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.5 , pp. 414-423
    • Hu, Q.1    Yu, D.R.2    Xie, Z.X.3
  • 15
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
    • R. Jensen, Q. Shen, Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches, IEEE Trans. Knowl. Data Eng. 16(12) (2004) 1457-1471.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 16
    • 33947421283 scopus 로고    scopus 로고
    • Fuzzy-rough sets assisted attribute reduction
    • R. Jensen, Q. Shen, Fuzzy-rough sets assisted attribute reduction, IEEE Trans. Fuzzy Syst. 15(1) (2007) 73-89.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.1 , pp. 73-89
    • Jensen, R.1    Shen, Q.2
  • 17
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • R. Jensen, Q. Shen, New approaches to fuzzy-rough feature selection, IEEE Trans. Fuzzy Syst. 17(4) (2009) 824-838.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 18
    • 1842674114 scopus 로고    scopus 로고
    • A new method for measuring uncertainty and fuzziness in rough set theory
    • J.Y. Liang, C.Y. Dang, K.S. Chin, C.M. Yam Richard, A new method for measuring uncertainty and fuzziness in rough set theory, Int. J. Gen. Syst. 31(4) (2002) 331-342.
    • (2002) Int. J. Gen. Syst. , vol.31 , Issue.4 , pp. 331-342
    • Liang, J.Y.1    Dang, C.Y.2    Chin, K.S.3    Yam Richard, C.M.4
  • 19
    • 51849091385 scopus 로고    scopus 로고
    • Information granules and entropy theory in information systems
    • J.Y. Liang, Y.H. Qian, Information granules and entropy theory in information systems, Sci. China, Ser. F 51(10) (2008) 1427-1444.
    • (2008) Sci. China, Ser. F , vol.51 , Issue.10 , pp. 1427-1444
    • Liang, J.Y.1    Qian, Y.H.2
  • 20
    • 64249098723 scopus 로고    scopus 로고
    • The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets
    • X.D. Liu, W. Pedrycz, T.Y. Chai, M.L. Song, The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets, IEEE Trans. Knowl. Data Eng. 21(3) (2009) 443-462.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.3 , pp. 443-462
    • Liu, X.D.1    Pedrycz, W.2    Chai, T.Y.3    Song, M.L.4
  • 27
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, C.Y. Dang, Positive approximation: an accelerator for attribute reduction in rough set theory, Artif. Intell. 174 (2010) 597-618.
    • (2010) Artif. Intell. , vol.174 , pp. 597-618
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 28
    • 79953066019 scopus 로고    scopus 로고
    • An efficient accelerator for attribute reduction from incomplete data in rough set framework
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, C.Y. Dang, An efficient accelerator for attribute reduction from incomplete data in rough set framework, Pattern Recognit. 44 (2011) 1658-1670.
    • (2011) Pattern Recognit. , vol.44 , pp. 1658-1670
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 30
    • 84877745731 scopus 로고    scopus 로고
    • Minimizing data consumption with sequential online feature selection
    • T. Ruckstieb, C. Osendorfer, P. Smagt, Minimizing data consumption with sequential online feature selection, Int. J. Mach. Learn. Cybern. 4(3) (2013) 235-243.
    • (2013) Int. J. Mach. Learn. Cybern. , vol.4 , Issue.3 , pp. 235-243
    • Ruckstieb, T.1    Osendorfer, C.2    Smagt, P.3
  • 31
    • 61549105957 scopus 로고    scopus 로고
    • Generalized rough sets, entropy and image ambiguity measures
    • D. Sen, S.K. Pal, Generalized rough sets, entropy and image ambiguity measures, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(1) (2009) 117-128.
    • (2009) IEEE Trans. Syst. Man Cybern., Part B, Cybern. , vol.39 , Issue.1 , pp. 117-128
    • Sen, D.1    Pal, S.K.2
  • 32
    • 84856043672 scopus 로고
    • The mathematical theory of communication
    • C.E. Shannon, The mathematical theory of communication, Bell Syst. Tech. J. 27(3-4) (1948) 373-423, 623-656.
    • (1948) Bell Syst. Tech. J. , vol.27 , Issue.3-4
    • Shannon, C.E.1
  • 33
    • 84868119274 scopus 로고    scopus 로고
    • Null space based feature selection method for gene expression data
    • A. Sharma, S. Imoto, S. Miyano, V. Sharma, Null space based feature selection method for gene expression data, Int. J. Mach. Learn. Cybern. 3(4) (2012) 269-276.
    • (2012) Int. J. Mach. Learn. Cybern. , vol.3 , Issue.4 , pp. 269-276
    • Sharma, A.1    Imoto, S.2    Miyano, S.3    Sharma, V.4
  • 34
    • 84885919318 scopus 로고    scopus 로고
    • A variational Bayesian framework for group feature selection
    • N. Subrahmanya, Y.C. Shin, A variational Bayesian framework for group feature selection, Int. J. Mach. Learn. Cybern. 4(6) (2013) 609-619.
    • (2013) Int. J. Mach. Learn. Cybern. , vol.4 , Issue.6 , pp. 609-619
    • Subrahmanya, N.1    Shin, Y.C.2
  • 36
    • 34447536352 scopus 로고    scopus 로고
    • Learning fuzzy rules from fuzzy samples based on rough set technique
    • X.Z. Wang, E.C.C. Tang, S.Y. Zhao, D.G. Chen, D.S. Yeung, Learning fuzzy rules from fuzzy samples based on rough set technique, Inf. Sci. 177 (2007) 4493-4514.
    • (2007) Inf. Sci. , vol.177 , pp. 4493-4514
    • Wang, X.Z.1    Tang, E.C.C.2    Zhao, S.Y.3    Chen, D.G.4    Yeung, D.S.5
  • 37
    • 0036662454 scopus 로고    scopus 로고
    • Decision table reduction based on conditional information entropy
    • G.Y. Wang, H. Yu, D.C. Yang, Decision table reduction based on conditional information entropy, Chin. J. Comput. 25(11) (2002) 1-8.
    • (2002) Chin. J. Comput. , vol.25 , Issue.11 , pp. 1-8
    • Wang, G.Y.1    Yu, H.2    Yang, D.C.3
  • 38
    • 0033337745 scopus 로고    scopus 로고
    • Measuring uncertainty in rough set theory
    • M.J. Wierman, Measuring uncertainty in rough set theory, Int. J. Gen. Syst. 28(4) (1999) 283-297.
    • (1999) Int. J. Gen. Syst. , vol.28 , Issue.4 , pp. 283-297
    • Wierman, M.J.1
  • 39
    • 0037403099 scopus 로고    scopus 로고
    • Generalized fuzzy rough sets
    • W.Z. Wu, J.S. Mi, W.X. Zhang, Generalized fuzzy rough sets, Inf. Sci. 151 (2003) 263-282.
    • (2003) Inf. Sci. , vol.151 , pp. 263-282
    • Wu, W.Z.1    Mi, J.S.2    Zhang, W.X.3
  • 40
    • 1642525198 scopus 로고    scopus 로고
    • Constructive and axiomatic approaches of fuzzy approximation operators
    • W.Z. Wu, W.X. Zhang, Constructive and axiomatic approaches of fuzzy approximation operators, Inf. Sci. 159 (2004) 233-254.
    • (2004) Inf. Sci. , vol.159 , pp. 233-254
    • Wu, W.Z.1    Zhang, W.X.2
  • 41
    • 84896383354 scopus 로고    scopus 로고
    • Sparse group LASSO based uncertain feature selection
    • Z.X. Xie, Y. Xu, Sparse group LASSO based uncertain feature selection, Int. J. Mach. Learn. Cybern. 5(2) (2014) 201-210.
    • (2014) Int. J. Mach. Learn. Cybern. , vol.5 , Issue.2 , pp. 201-210
    • Xie, Z.X.1    Xu, Y.2
  • 43
    • 52949144505 scopus 로고    scopus 로고
    • Probabilistic rough set approximations
    • Y.Y. Yao, Probabilistic rough set approximations, Int. J. Approx. Reason. 49(2) (2008) 255-271.
    • (2008) Int. J. Approx. Reason. , vol.49 , Issue.2 , pp. 255-271
    • Yao, Y.Y.1
  • 44
    • 70149107353 scopus 로고    scopus 로고
    • Interpreting concept learning in cognitive informatics and granular computing
    • Y.Y. Yao, Interpreting concept learning in cognitive informatics and granular computing, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(4) (2009) 855-865.
    • (2009) IEEE Trans. Syst. Man Cybern., Part B, Cybern. , vol.39 , Issue.4 , pp. 855-865
    • Yao, Y.Y.1
  • 47
    • 65549100708 scopus 로고    scopus 로고
    • The model of fuzzy variable precision rough sets
    • S.Y. Zhao, E.C.C. Tsang, D.G. Chen, The model of fuzzy variable precision rough sets, IEEE Trans. Fuzzy Syst. 17(2) (2009) 451-467.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.2 , pp. 451-467
    • Zhao, S.Y.1    Tsang, E.C.C.2    Chen, D.G.3
  • 48
    • 77949940694 scopus 로고    scopus 로고
    • Building a rule-based classifier - A fuzzy rough set approach
    • S.Y. Zhao, E.C.C. Tsang, X.Z. Wang, Building a rule-based classifier - a fuzzy rough set approach, IEEE Trans. Knowl. Data Eng. 22(5) (2009) 624-638.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.5 , pp. 624-638
    • Zhao, S.Y.1    Tsang, E.C.C.2    Wang, X.Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.