메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3630-3637

Predicting user annoyance using visual attributes

Author keywords

annoyance of mistakes; attributes; cost of mistakes; human centric applications

Indexed keywords

FORECASTING;

EID: 84911378660     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.464     Document Type: Conference Paper
Times cited : (6)

References (36)
  • 1
    • 84898472323 scopus 로고    scopus 로고
    • Semi-supervised clustering via learnt codeword distances
    • D. Batra, R. Sukthankar, and T. Chen. Semi-supervised clustering via learnt codeword distances. In BMVC, 2008.
    • (2008) BMVC
    • Batra, D.1    Sukthankar, R.2    Chen, T.3
  • 2
    • 80052896727 scopus 로고    scopus 로고
    • Automatic attribute discovery and characterization from noisy web data
    • T. Berg, A. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV, 2010.
    • (2010) ECCV
    • Berg, T.1    Berg, A.2    Shih, J.3
  • 5
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle. Training a support vector machine in the primal. Neural Computation, 2007.
    • (2007) Neural Computation
    • Chapelle, O.1
  • 6
    • 80052883815 scopus 로고    scopus 로고
    • Combining attributes and fisher vectors for efficient image retrieval
    • M. Douze, A. Ramisa, and C. Schmid. Combining attributes and fisher vectors for efficient image retrieval. In CVPR, 2011.
    • (2011) CVPR
    • Douze, M.1    Ramisa, A.2    Schmid, C.3
  • 7
    • 77956006784 scopus 로고    scopus 로고
    • Attribute-centric recognition for cross-category generalization
    • A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for cross-category generalization. In CVPR, 2010.
    • (2010) CVPR
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3
  • 9
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, 2007.
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 10
    • 50649117726 scopus 로고    scopus 로고
    • Learning globally-consistent local distance functions for shape-based image retrieval and classification
    • A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local distance functions for shape-based image retrieval and classification. In ICCV, 2007.
    • (2007) ICCV
    • Frome, A.1    Singer, Y.2    Sha, F.3    Malik, J.4
  • 11
    • 84858775391 scopus 로고    scopus 로고
    • Online metric learning and fast similarity search
    • P. Jain, B. Kulis, I. Dhillon, and K. Grauman. Online metric learning and fast similarity search. In NIPS, 2008.
    • (2008) NIPS
    • Jain, P.1    Kulis, B.2    Dhillon, I.3    Grauman, K.4
  • 12
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.
    • (2002) KDD
    • Joachims, T.1
  • 13
    • 84866726804 scopus 로고    scopus 로고
    • Whittlesearch: Image search with relative attribute feedback
    • IEEE
    • A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch: Image search with relative attribute feedback. In CVPR, pages 2973-2980. IEEE, 2012.
    • (2012) CVPR , pp. 2973-2980
    • Kovashka, A.1    Parikh, D.2    Grauman, K.3
  • 15
    • 70450126609 scopus 로고    scopus 로고
    • Facetracer: A search engine for large collections of images with faces
    • N. Kumar, P. Belhumeur, and S. Nayar. Facetracer: A search engine for large collections of images with faces. In ECCV, 2010.
    • (2010) ECCV
    • Kumar, N.1    Belhumeur, P.2    Nayar, S.3
  • 16
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute and simile classifiers for face verification. In ICCV, 2009.
    • (2009) ICCV
    • Kumar, N.1    Berg, A.2    Belhumeur, P.3    Nayar, S.4
  • 17
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 18
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification and semantic feature sparsification
    • L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object bank: A high-level image representation for scene classification and semantic feature sparsification. In NIPS, 2010.
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Xing, E.P.3    Fei-Fei, L.4
  • 20
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 2001.
    • (2001) IJCV
    • Oliva, A.1    Torralba, A.2
  • 21
    • 80052900722 scopus 로고    scopus 로고
    • Interactively building a discriminative vocabulary of nameable attributes
    • D. Parikh and K. Grauman. Interactively building a discriminative vocabulary of nameable attributes. In CVPR, 2011.
    • (2011) CVPR
    • Parikh, D.1    Grauman, K.2
  • 22
  • 23
    • 84887393691 scopus 로고    scopus 로고
    • Attributes for classifier feedback
    • A. Parkash and D. Parikh. Attributes for classifier feedback. In ECCV, 2012.
    • (2012) ECCV
    • Parkash, A.1    Parikh, D.2
  • 24
    • 84866637964 scopus 로고    scopus 로고
    • Sun attribute database: Discovering, annotating, and recognizing scene attributes
    • G. Patterson and J. Hays. Sun attribute database: Discovering, annotating, and recognizing scene attributes. In CVPR, 2012.
    • (2012) CVPR
    • Patterson, G.1    Hays, J.2
  • 27
    • 84908571977 scopus 로고    scopus 로고
    • Multimedia semantic indexing using model vectors
    • J. Smith, M. Naphade, and A. Natsev. Multimedia semantic indexing using model vectors. In ICME, 2003.
    • (2003) ICME
    • Smith, J.1    Naphade, M.2    Natsev, A.3
  • 29
    • 80052896768 scopus 로고    scopus 로고
    • Efficient object category recognition using classemes
    • L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV, 2010.
    • (2010) ECCV
    • Torresani, L.1    Szummer, M.2    Fitzgibbon, A.3
  • 31
    • 77953177673 scopus 로고    scopus 로고
    • Joint learning of visual attributes, object classes and visual saliency
    • G. Wang and D. Forsyth. Joint learning of visual attributes, object classes and visual saliency. In ICCV, 2009.
    • (2009) ICCV
    • Wang, G.1    Forsyth, D.2
  • 32
    • 77955997493 scopus 로고    scopus 로고
    • Comparative object similarity for improved recognition with few or no examples
    • G. Wang, D. Forsyth, and D. Hoiem. Comparative object similarity for improved recognition with few or no examples. In CVPR, 2010.
    • (2010) CVPR
    • Wang, G.1    Forsyth, D.2    Hoiem, D.3
  • 33
    • 84898919358 scopus 로고    scopus 로고
    • Learning models for object recognition from natural language descriptions
    • J. Wang, K. Markert, and M. Everingham. Learning models for object recognition from natural language descriptions. In BMVC, 2009.
    • (2009) BMVC
    • Wang, J.1    Markert, K.2    Everingham, M.3
  • 34
    • 80052882164 scopus 로고    scopus 로고
    • Query-specific visual semantic spaces for web image re-ranking
    • X. Wang, K. Liu, and X. Tang. Query-specific visual semantic spaces for web image re-ranking. In CVPR, 2011.
    • (2011) CVPR
    • Wang, X.1    Liu, K.2    Tang, X.3
  • 35
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.3    Oliva, A.4    Torralba, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.