메뉴 건너뛰기




Volumn 42, Issue 4, 2015, Pages 1797-1805

Using Volume Weighted Support Vector Machines with walk forward testing and feature selection for the purpose of creating stock trading strategy

Author keywords

Stock trading; Support Vector Machines; Trend forecasting; Walk forward testing

Indexed keywords

ABILITY TESTING; COMMERCE; EARNINGS; FEATURE EXTRACTION;

EID: 84910674216     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.10.001     Document Type: Article
Times cited : (95)

References (28)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 3
    • 36148993631 scopus 로고    scopus 로고
    • Intelligent technical analysis based equivolume charting for stock trading using neural networks
    • Chavarnakul, T., & Enke, D. (2008). Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications, 34, 1004-1017.
    • (2008) Expert Systems with Applications , vol.34 , pp. 1004-1017
    • Chavarnakul, T.1    Enke, D.2
  • 4
    • 34047138318 scopus 로고    scopus 로고
    • Combining SVMs with various feature selection strategies
    • Chen, Y. -W., & Lin, C. -J. (2006). Combining SVMs with various feature selection strategies. In Feature extraction (pp. 315-324). 〈http://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf〉.
    • (2006) Feature Extraction , pp. 315-324
    • Chen, Y.W.1    Lin, C.J.2
  • 5
    • 53849147853 scopus 로고    scopus 로고
    • Fuzzy dual-factor time-series for stock index forecasting
    • Chu, H.-H., Chen, T.-L., Cheng, C.-H., & Huang, C.-C. (2009). Fuzzy dual-factor time-series for stock index forecasting. Expert Systems with Applications, 36, 165-171. http://dx.doi.org/10.1016/j.eswa.2007.09.037.
    • (2009) Expert Systems with Applications , vol.36 , pp. 165-171
    • Chu, H.-H.1    Chen, T.-L.2    Cheng, C.-H.3    Huang, C.-C.4
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 84885911498 scopus 로고    scopus 로고
    • Incorporating feature selection method into support vector regression for stock index forecasting
    • Dai, W., Shao, Y. E., & Lu, C.-J. (2012). Incorporating feature selection method into support vector regression for stock index forecasting. Neural Computing and Applications, 23, 1551-1561.
    • (2012) Neural Computing and Applications , vol.23 , pp. 1551-1561
    • Dai, W.1    Shao, Y.E.2    Lu, C.-J.3
  • 8
    • 84886965279 scopus 로고    scopus 로고
    • Daytrading with on-balance volume
    • Davies, D. (2004). Daytrading with on-balance volume. Stocks & Commodities, 22, 20-25.
    • (2004) Stocks & Commodities , vol.22 , pp. 20-25
    • Davies, D.1
  • 9
    • 84910615472 scopus 로고
    • The relative strength index
    • Faber, B. (1994). The relative strength index. Stocks & Commodities, 12, 381-384.
    • (1994) Stocks & Commodities , vol.12 , pp. 381-384
    • Faber, B.1
  • 10
    • 84910600264 scopus 로고    scopus 로고
    • Which volatility measure?
    • Gustafson, G. (2001). Which volatility measure? Stocks & Commodities, 19, 46-50.
    • (2001) Stocks & Commodities , vol.19 , pp. 46-50
    • Gustafson, G.1
  • 11
    • 49149137624 scopus 로고
    • The personalization of security selection: An application of fuzzy set theory
    • Hammerbacher, I. M., & Yager, R. R. (1981). The personalization of security selection: An application of fuzzy set theory. Fuzzy Sets and Systems, 5, 1-9.
    • (1981) Fuzzy Sets and Systems , vol.5 , pp. 1-9
    • Hammerbacher, I.M.1    Yager, R.R.2
  • 12
    • 84874018551 scopus 로고    scopus 로고
    • A hybrid procedure with feature selection for resolving stock/futures price forecasting problems
    • Hsu, C.-M. (2011). A hybrid procedure with feature selection for resolving stock/futures price forecasting problems. Neural Computing and Applications, 22, 651-671.
    • (2011) Neural Computing and Applications , vol.22 , pp. 651-671
    • Hsu, C.-M.1
  • 14
    • 84655163231 scopus 로고    scopus 로고
    • A hybrid stock selection model using genetic algorithms and support vector regression
    • http://linkinghub.elsevier.com/retrieve/pii/S1568
    • Huang, C.-F. (2012). A hybrid stock selection model using genetic algorithms and support vector regression. Applied Soft Computing, 12, 807-818. http://dx.doi.org/10.1016/j.asoc.2011.10.009〈http://linkinghub.elsevier.com/retrieve/pii/S1568494611004030〉.
    • (2012) Applied Soft Computing , vol.12 , pp. 807-818
    • Huang, C.-F.1
  • 15
    • 79151471046 scopus 로고    scopus 로고
    • Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange
    • Kara, Y., Acar Boyacioglu, M., & Baykan, O. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange. Expert Systems with Applications, 38, 5311-5319.
    • (2011) Expert Systems with Applications , vol.38 , pp. 5311-5319
    • Kara, Y.1    Acar Boyacioglu, M.2    Baykan, O.K.3
  • 16
    • 84884392049 scopus 로고    scopus 로고
    • Stock trading with random forests, trend detection tests and force index volume indicators
    • Artificial Intelligence and Soft Computing
    • Ladyzynski, P., Zbikowski, K., & Grzegorzewski, P. (2013). Stock trading with random forests, trend detection tests and force index volume indicators. Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, 7895, 441-452.
    • (2013) Lecture Notes in Computer Science , vol.7895 , pp. 441-452
    • Ladyzynski, P.1    Zbikowski, K.2    Grzegorzewski, P.3
  • 17
    • 67349231310 scopus 로고    scopus 로고
    • Using support vector machine with a hybrid feature selection method to the stock trend prediction
    • Lee, M.-C. (2009). Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Systems with Applications, 36, 10896-10904.
    • (2009) Expert Systems with Applications , vol.36 , pp. 10896-10904
    • Lee, M.-C.1
  • 19
    • 84906950958 scopus 로고    scopus 로고
    • LG-Trader: Stock trading decision support based on feature selection by weighted localized generalization error model
    • http://linkinghub.elsevier.com/retrieve/pii/S0925
    • Ng, W. W., Liang, X.-L., Li, J., Yeung, D. S., & Chan, P. P. (2014). LG-Trader: Stock trading decision support based on feature selection by weighted localized generalization error model. Neurocomputing, 146, 104-112. http://dx.doi.org/10.1016/j.neucom.2014.04.066〈http://linkinghub.elsevier.com/retrieve/pii/S0925231214008765〉.
    • (2014) Neurocomputing , vol.146 , pp. 104-112
    • Ng, W.W.1    Liang, X.-L.2    Li, J.3    Yeung, D.S.4    Chan, P.P.5
  • 20
    • 0031553660 scopus 로고    scopus 로고
    • Financial time series modelling with discounted least squares backpropagation
    • Refenes, A. N., Bentz, Y., Bunn, D. W., Burgess, A. N., & Zapranis, A. D. (1997). Financial time series modelling with discounted least squares backpropagation. Neurocomputing, 14, 123-138.
    • (1997) Neurocomputing , vol.14 , pp. 123-138
    • Refenes, A.N.1    Bentz, Y.2    Bunn, D.W.3    Burgess, A.N.4    Zapranis, A.D.5
  • 21
    • 85027925075 scopus 로고    scopus 로고
    • The effectiveness of the combined use of VIX and support vector machines on the prediction of S&P 500
    • http://link.springer.com/10.1007/s00521-013-1487-7
    • Rosillo, R., Giner, J., & Fuente, D. (2013). The effectiveness of the combined use of VIX and support vector machines on the prediction of S&P 500. Neural Computing and Applications, 25, 321-332. http://dx.doi.org/10.1007/s00521-013-1487-7〈http://link.springer.com/10.1007/s00521-013-1487-7〉.
    • (2013) Neural Computing and Applications , vol.25 , pp. 321-332
    • Rosillo, R.1    Giner, J.2    Fuente, D.3
  • 22
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48, 847-861.
    • (2002) Neurocomputing , vol.48 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.J.2
  • 23
    • 80052590857 scopus 로고    scopus 로고
    • A method for automatic stock trading combining technical analysis and nearest neighbor classification
    • Teixeira, L. A. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert Systems with Applications, 37, 6885-6890.
    • (2010) Expert Systems with Applications , vol.37 , pp. 6885-6890
    • Teixeira, L.A.1
  • 25
    • 71749083786 scopus 로고    scopus 로고
    • Automatic stock decision support system based on box theory and SVM algorithm
    • Wen, Q., Yang, Z., Song, Y., & Jia, P. (2010). Automatic stock decision support system based on box theory and SVM algorithm. Expert Systems with Applications, 37, 1015-1022.
    • (2010) Expert Systems with Applications , vol.37 , pp. 1015-1022
    • Wen, Q.1    Yang, Z.2    Song, Y.3    Jia, P.4
  • 26
    • 0001242140 scopus 로고
    • Time series forecasting using backpropagation neural networks
    • Wong, F. S. (1991). Time series forecasting using backpropagation neural networks. Neurocomputing, 2, 147-159.
    • (1991) Neurocomputing , vol.2 , pp. 147-159
    • Wong, F.S.1
  • 27
    • 84903483292 scopus 로고    scopus 로고
    • Time series forecasting with volume weighted support vector machines
    • Zbikowski, K. (2014). Time series forecasting with volume weighted support vector machines. Communications in Computer and Information Science, 424, 250-258.
    • (2014) Communications in Computer and Information Science , vol.424 , pp. 250-258
    • Zbikowski, K.1
  • 28
    • 84904356230 scopus 로고    scopus 로고
    • A causal feature selection algorithm for stock prediction modeling
    • http://linkinghub.elsevier.com/retrieve/pii/S0925
    • Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., & Liu, M. (2014). A causal feature selection algorithm for stock prediction modeling. Neurocomputing, 142, 48-59. http://dx.doi.org/10.1016/j.neucom.2014.01.057〈http://linkinghub.elsevier.com/retrieve/pii/S0925231214005359〉.
    • (2014) Neurocomputing , vol.142 , pp. 48-59
    • Zhang, X.1    Hu, Y.2    Xie, K.3    Wang, S.4    Ngai, E.5    Liu, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.