메뉴 건너뛰기




Volumn 81, Issue , 2015, Pages 554-562

Effects of inclusion size on thermal conductivity and rheological behavior of ethylene glycol-based suspensions containing silver nanowires with various specific surface areas

Author keywords

Nanofluids Ag nanowires Specific surface area; Rheological behavior; Thermal conductivity

Indexed keywords

ASPECT RATIO; ETHYLENE; ETHYLENE GLYCOL; LIQUIDS; NANOWIRES; RHEOLOGY; SILVER; SPECIFIC SURFACE AREA; THERMAL CONDUCTIVITY OF LIQUIDS; THERMODYNAMIC PROPERTIES;

EID: 84910618581     PISSN: 00179310     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijheatmasstransfer.2014.10.043     Document Type: Article
Times cited : (22)

References (38)
  • 1
    • 33750694638 scopus 로고    scopus 로고
    • Heat transfer characteristics of nanofluids: A review
    • X.Q. Wang, and A.S. Mujumdar Heat transfer characteristics of nanofluids: a review Int. J. Therm. Sci. 46 2007 1 19
    • (2007) Int. J. Therm. Sci. , vol.46 , pp. 1-19
    • Wang, X.Q.1    Mujumdar, A.S.2
  • 2
    • 78651390164 scopus 로고    scopus 로고
    • Review of heat conduction in nanofluids
    • J. Fang, and L.Q. Wang Review of heat conduction in nanofluids J. Heat Transfer Trans. ASME 133 2011 040801
    • (2011) J. Heat Transfer Trans. ASME , vol.133 , pp. 040801
    • Fang, J.1    Wang, L.Q.2
  • 4
    • 77649233259 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of nanofluids: A state-of-the-art review
    • S. Özerinç, S. Kakaç, and A.G. YazIcIoʇlu Enhanced thermal conductivity of nanofluids: a state-of-the-art review Microfluid. Nanofluid. 8 2010 145 170
    • (2010) Microfluid. Nanofluid. , vol.8 , pp. 145-170
    • Özerinç, S.1    Kakaç, S.2    Yazicioʇlu, A.G.3
  • 5
    • 84871290108 scopus 로고    scopus 로고
    • Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes
    • Z.T. Yu, X. Fang, L.W. Fan, X. Wang, Y.Q. Xiao, Y. Zeng, X. Xu, Y.C. Hu, and K.F. Cen Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes Carbon 53 2013 277 285
    • (2013) Carbon , vol.53 , pp. 277-285
    • Yu, Z.T.1    Fang, X.2    Fan, L.W.3    Wang, X.4    Xiao, Y.Q.5    Zeng, Y.6    Xu, X.7    Hu, Y.C.8    Cen, K.F.9
  • 6
    • 67650723427 scopus 로고    scopus 로고
    • Particle shape effects on thermophysical properties of alumina nanofluids
    • E.V. Timofeeva, J.L. Routbort, and D. Singh Particle shape effects on thermophysical properties of alumina nanofluids J. Appl. Phys. 106 2009 014304
    • (2009) J. Appl. Phys. , vol.106 , pp. 014304
    • Timofeeva, E.V.1    Routbort, J.L.2    Singh, D.3
  • 7
    • 84889578549 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of ethylene glycol-based suspensions in the presence of silver nanoparticles of various shapes
    • X. Fang, Q. Ding, L.W. Fan, Z.T. Yu, X. Xu, G.H. Cheng, Y.C. Hu, and K.F. Cen Thermal conductivity enhancement of ethylene glycol-based suspensions in the presence of silver nanoparticles of various shapes J. Heat Transfer Trans. ASME 136 2014 034501
    • (2014) J. Heat Transfer Trans. ASME , vol.136 , pp. 034501
    • Fang, X.1    Ding, Q.2    Fan, L.W.3    Yu, Z.T.4    Xu, X.5    Cheng, G.H.6    Hu, Y.C.7    Cen, K.F.8
  • 9
    • 84858035707 scopus 로고    scopus 로고
    • Investigation of thermal conductivity and viscosity of carbon nanotubes-ethylene glycol nanofluids
    • N. Singh, G. Chand, and S. Kanagaraj Investigation of thermal conductivity and viscosity of carbon nanotubes-ethylene glycol nanofluids Heat Transfer Eng. 33 2012 821 827
    • (2012) Heat Transfer Eng. , vol.33 , pp. 821-827
    • Singh, N.1    Chand, G.2    Kanagaraj, S.3
  • 11
    • 78349304419 scopus 로고    scopus 로고
    • Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan
    • T.X. Phuoc, M. Massoudi, and R.H. Chen Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan Int. J. Therm. Sci. 50 2011 12 18
    • (2011) Int. J. Therm. Sci. , vol.50 , pp. 12-18
    • Phuoc, T.X.1    Massoudi, M.2    Chen, R.H.3
  • 12
    • 0242272424 scopus 로고    scopus 로고
    • Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities
    • H.W. Xie, H. Lee, W. Youn, and M. Choi Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities J. Appl. Phys. 94 2003 4967 4971
    • (2003) J. Appl. Phys. , vol.94 , pp. 4967-4971
    • Xie, H.W.1    Lee, H.2    Youn, W.3    Choi, M.4
  • 13
    • 53249101311 scopus 로고    scopus 로고
    • Nanofluids containing carbon nanotubes treated by mechanochemical reaction
    • L.F. Chen, H.Q. Xie, Y. Li, and W. Yu Nanofluids containing carbon nanotubes treated by mechanochemical reaction Thermochim. Acta 477 2008 21 24
    • (2008) Thermochim. Acta , vol.477 , pp. 21-24
    • Chen, L.F.1    Xie, H.Q.2    Li, Y.3    Yu, W.4
  • 14
    • 8644220606 scopus 로고    scopus 로고
    • Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)
    • D.S. Wen, and Y.L. Ding Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids) J. Thermophys. Heat Transfer 18 2004 481 485
    • (2004) J. Thermophys. Heat Transfer , vol.18 , pp. 481-485
    • Wen, D.S.1    Ding, Y.L.2
  • 16
  • 17
    • 84877743197 scopus 로고    scopus 로고
    • Thermal conductivity of nanofluids containing high aspect ratio fillers
    • B.M. Gu, B. Hou, Z.X. Lu, Z.L. Wang, and S.F. Chen Thermal conductivity of nanofluids containing high aspect ratio fillers Int. J. Heat Mass Transfer 64 2013 108 114
    • (2013) Int. J. Heat Mass Transfer , vol.64 , pp. 108-114
    • Gu, B.M.1    Hou, B.2    Lu, Z.X.3    Wang, Z.L.4    Chen, S.F.5
  • 18
    • 62749088950 scopus 로고    scopus 로고
    • Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants
    • W.T. Jing, G.L. Ding, and H. Peng Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants Int. J. Therm. Sci. 48 2009 1108 1115
    • (2009) Int. J. Therm. Sci. , vol.48 , pp. 1108-1115
    • Jing, W.T.1    Ding, G.L.2    Peng, H.3
  • 19
    • 26444611462 scopus 로고    scopus 로고
    • Model for thermal conductivity of carbon nanotube-based composites
    • Q.Z. Xue Model for thermal conductivity of carbon nanotube-based composites Physica B 368 2005 302 307
    • (2005) Physica B , vol.368 , pp. 302-307
    • Xue, Q.Z.1
  • 21
    • 84881188668 scopus 로고    scopus 로고
    • An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity
    • Y. Z, L.W. Fan, Y.Q. Xiao, Z.T. Yu, and K.F. Cen An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity Int. J. Heat Mass Transfer 66 2013 111 117
    • (2013) Int. J. Heat Mass Transfer , vol.66 , pp. 111-117
    • Fan, L.W.1    Xiao, Y.Q.2    Yu, Z.T.3    Cen, K.F.4
  • 22
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two-component systems
    • R.L. Hamilton, and O.K. Crosser Thermal conductivity of heterogeneous two-component systems Ind. Eng. Chem. Res. 1 1962 187 191
    • (1962) Ind. Eng. Chem. Res. , vol.1 , pp. 187-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 23
    • 0016993583 scopus 로고
    • Methods for predicting the thermal conductivity of composite systems: A review
    • R.C. Progelhof, J.L. Throne, and R.R. Ruetsch Methods for predicting the thermal conductivity of composite systems: a review Polym. Eng. Sci. 16 1976 615 625
    • (1976) Polym. Eng. Sci. , vol.16 , pp. 615-625
    • Progelhof, R.C.1    Throne, J.L.2    Ruetsch, R.R.3
  • 24
    • 2942664968 scopus 로고    scopus 로고
    • A simple model for thermal conductivity of carbon nanotube-based composites
    • C.W. Nan, Z. Shi, and Y. Lin A simple model for thermal conductivity of carbon nanotube-based composites Chem. Phys. Lett. 375 2003 666 669
    • (2003) Chem. Phys. Lett. , vol.375 , pp. 666-669
    • Nan, C.W.1    Shi, Z.2    Lin, Y.3
  • 25
    • 9744240947 scopus 로고    scopus 로고
    • Interface effect on thermal conductivity of carbon nanotube composites
    • C.W. Nan, G. Liu, Y.H. Lin, and M. Li Interface effect on thermal conductivity of carbon nanotube composites Appl. Phys. Lett. 85 2004 3549 3551
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 3549-3551
    • Nan, C.W.1    Liu, G.2    Lin, Y.H.3    Li, M.4
  • 26
    • 2942694254 scopus 로고    scopus 로고
    • Role of Brownian motion in the enhanced thermal conductivity of nanofluids
    • S.P. Jang, and S.U.S. Choi Role of Brownian motion in the enhanced thermal conductivity of nanofluids Appl. Phys. Lett. 84 2004 4316 4318
    • (2004) Appl. Phys. Lett. , vol.84 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 27
    • 16244411133 scopus 로고    scopus 로고
    • A new thermal conductivity model for nanofluids
    • J. Koo, and C. Kleinstreuer A new thermal conductivity model for nanofluids J. Nanopart. Res. 6 2004 577 588
    • (2004) J. Nanopart. Res. , vol.6 , pp. 577-588
    • Koo, J.1    Kleinstreuer, C.2
  • 28
    • 56649120696 scopus 로고    scopus 로고
    • New temperature dependent thermal conductivity data for water-based nanofluids
    • H.A. Mintsa, G. Roy, C.T. Nguyen, and D. Doucet New temperature dependent thermal conductivity data for water-based nanofluids Int. J. Therm. Sci. 48 2009 363 371
    • (2009) Int. J. Therm. Sci. , vol.48 , pp. 363-371
    • Mintsa, H.A.1    Roy, G.2    Nguyen, C.T.3    Doucet, D.4
  • 29
    • 0037570726 scopus 로고    scopus 로고
    • A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
    • B.X. Wang, L.P. Zhou, and X.F. Peng A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles Int. J. Heat Mass Transfer 46 2003 2665 2672
    • (2003) Int. J. Heat Mass Transfer , vol.46 , pp. 2665-2672
    • Wang, B.X.1    Zhou, L.P.2    Peng, X.F.3
  • 30
    • 84900345037 scopus 로고    scopus 로고
    • Do temperature and nanoparticle size affect the thermal conductivity of alumina nanofluids
    • J.H. Lee, S.H. Lee, and S.P. Jang Do temperature and nanoparticle size affect the thermal conductivity of alumina nanofluids Appl. Phys. Lett. 104 2014 161908
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 161908
    • Lee, J.H.1    Lee, S.H.2    Jang, S.P.3
  • 31
    • 77955092055 scopus 로고    scopus 로고
    • The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures
    • M.P. Beck, Y.H. Yuan, P. Warrier, and A.S. Teja The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures J. Nanopart. Res. 12 2010 1469 1477
    • (2010) J. Nanopart. Res. , vol.12 , pp. 1469-1477
    • Beck, M.P.1    Yuan, Y.H.2    Warrier, P.3    Teja, A.S.4
  • 32
    • 78650621663 scopus 로고    scopus 로고
    • Thermal conductivity of non-Newtonian nanofluids: Experimental data and modeling using neural network
    • M. Hojjat, S.G. Etemad, R. Bagheri, and J. Thibault Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network Int. J. Heat Mass Transfer 54 2011 1017 1023
    • (2011) Int. J. Heat Mass Transfer , vol.54 , pp. 1017-1023
    • Hojjat, M.1    Etemad, S.G.2    Bagheri, R.3    Thibault, J.4
  • 33
    • 33745815300 scopus 로고    scopus 로고
    • Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids
    • R. Prasher, P. Bhattacharya, and P.E. Phelan Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids J. Heat Transfer Trans. ASME 128 2005 588-595
    • (2005) J. Heat Transfer Trans. ASME , vol.128 , pp. 588-595
    • Prasher, R.1    Bhattacharya, P.2    Phelan, P.E.3
  • 34
    • 33846212266 scopus 로고    scopus 로고
    • Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites
    • F. Deng, Q.S. Zheng, L.F. Wang, and C.W. Nan Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites Appl. Phys. Lett. 90 2007 021914
    • (2007) Appl. Phys. Lett. , vol.90 , pp. 021914
    • Deng, F.1    Zheng, Q.S.2    Wang, L.F.3    Nan, C.W.4
  • 35
    • 33645671456 scopus 로고    scopus 로고
    • Model for the effective thermal conductivity of carbon nanotube composites
    • Q.Z. Xue Model for the effective thermal conductivity of carbon nanotube composites Nanotechnology 17 2006 1068 1071
    • (2006) Nanotechnology , vol.17 , pp. 1068-1071
    • Xue, Q.Z.1
  • 36
    • 84877800687 scopus 로고    scopus 로고
    • Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of solid paraffin-based nanocomposite phase change materials
    • L.W. Fan, X. Fang, X. Wang, Y. Zeng, Y.Q. Xiao, Z.T. Yu, X. Xu, Y.C. Hu, and K.F. Cen Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of solid paraffin-based nanocomposite phase change materials Appl. Energy 110 2013 163 172
    • (2013) Appl. Energy , vol.110 , pp. 163-172
    • Fan, L.W.1    Fang, X.2    Wang, X.3    Zeng, Y.4    Xiao, Y.Q.5    Yu, Z.T.6    Xu, X.7    Hu, Y.C.8    Cen, K.F.9
  • 38
    • 0037394035 scopus 로고    scopus 로고
    • Aggregation structure and thermal conductivity of nanofluids
    • Y.M. Xuan, Q. Li, and W.F. Hu Aggregation structure and thermal conductivity of nanofluids AIChE J. 24 2004 1038 1043
    • (2004) AIChE J. , vol.24 , pp. 1038-1043
    • Xuan, Y.M.1    Li, Q.2    Hu, W.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.