메뉴 건너뛰기




Volumn 29, Issue 5, 2014, Pages 1093-1105

Mesoscale data assimilation for a local severe rainfall event with the NHM-LETKF system

Author keywords

[No Author keywords available]

Indexed keywords

DECISION MAKING; FORECASTING; RAIN; UNCERTAINTY ANALYSIS; WEATHER INFORMATION SERVICES;

EID: 84910599486     PISSN: 08828156     EISSN: 15200434     Source Type: Journal    
DOI: 10.1175/WAF-D-13-00032.1     Document Type: Article
Times cited : (44)

References (38)
  • 1
    • 67649427472 scopus 로고    scopus 로고
    • Monitoring the observation impact on the short-range forecast
    • Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239-250, doi:10.1002/qj.366.
    • (2009) Quart. J. Roy. Meteor. Soc , vol.135 , pp. 239-250
    • Cardinali, C.1
  • 2
    • 0032443495 scopus 로고    scopus 로고
    • Dynamics and prediction of a mesoscale extreme rain event in the baiu front over Kyushu, Japan
    • Davidson, N. E., K. Kurihara, T. Kato, G. Mills, and K. Puri, 1998: Dynamics and prediction of a mesoscale extreme rain event in the baiu front over Kyushu, Japan. Mon. Wea. Rev., 126, 1608-1629, doi:10.1175/1520-0493(1998)126,1608: DAPOAM.2.0.CO;2.
    • (1998) Mon. Wea. Rev , vol.126 , pp. 1608-1629
    • Davidson, N.E.1    Kurihara, K.2    Kato, T.3    Mills, G.4    Puri, K.5
  • 3
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143-10 162, doi:10.1029/94JC00572.
    • (1994) J. Geophys. Res , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 4
    • 61349138311 scopus 로고    scopus 로고
    • Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models
    • Gelaro, R., and Y. Zhu, 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus, 61A, 179-193, doi:10.1111/ j.1600-0870.2008.00388.x.
    • (2009) Tellus , vol.61 A , pp. 179-193
    • Gelaro, R.1    Zhu, Y.2
  • 5
    • 77956291306 scopus 로고    scopus 로고
    • An ensemble Kalman filter data assimilation system for the Martian atmosphere: Implementation and simulation experiments
    • Hoffman, M. J., and Coauthors, 2010: An ensemble Kalman filter data assimilation system for the Martian atmosphere: Implementation and simulation experiments. Icarus, 209, 470- 481, doi:10.1016/j.icarus.2010.03.034.
    • (2010) Icarus , vol.209 , pp. 470-481
    • Hoffman, M.J.1
  • 6
    • 34548036414 scopus 로고    scopus 로고
    • A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results
    • Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 3465-3475, doi:10.1256/qj.05.132.
    • (2005) Quart. J. Roy. Meteor. Soc , vol.131 , pp. 3465-3475
    • Honda, Y.1    Nishijima, M.2    Koizumi, K.3    Ohta, Y.4    Tamiya, K.5    Kawabata, T.6    Tsuyuki, T.7
  • 7
    • 3843055922 scopus 로고    scopus 로고
    • Four-dimensional ensemble Kalman filtering
    • Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A, 273-277, doi:10.1111/ j.1600-0870.2004.00066.x.
    • (2004) Tellus , vol.56 A , pp. 273-277
    • Hunt, B.R.1
  • 8
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126, doi:10.1016/ j.physd.2006.11.008.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.J.2    Szunyogh, I.3
  • 9
    • 0003464184 scopus 로고
    • Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI
    • Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 28, 238 pp.
    • (1991) MRI Tech. Rep , vol.28 , pp. 238
    • Ikawa, M.1    Saito, K.2
  • 10
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Fluids Eng., 82, 35-45, doi:10.1115/ 1.3662552.
    • (1960) J. Fluids Eng , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 11
    • 79957462609 scopus 로고    scopus 로고
    • Variable localization'' in an ensemble Kalman filter: Application to the carbon cycle data assimilation
    • Kang, J.-S., E. Kalnay, J. Liu, I. Fung, T. Miyoshi, and K. Ide, 2011: ''Variable localization'' in an ensemble Kalman filter: Application to the carbon cycle data assimilation. J. Geophys. Res., 116, D09110, doi:10.1029/2010JD014673.
    • (2011) J. Geophys. Res , vol.116
    • Kang, J.-S.1    Kalnay, E.2    Liu, J.3    Fung, I.4    Miyoshi, T.5    Ide, K.6
  • 12
    • 84874836352 scopus 로고    scopus 로고
    • Including uncertainties of sea surface temperature in an ensemble Kalman filter: A case study of Typhoon Sinlaku (2008)
    • Kunii, M., and T. Miyoshi, 2012: Including uncertainties of sea surface temperature in an ensemble Kalman filter: A case study of Typhoon Sinlaku (2008). Wea. Forecasting, 27, 1586- 1597, doi:10.1175/WAF-D-11-00136.1.
    • (2012) Wea. Forecasting , vol.27 , pp. 1586- 1597
    • Kunii, M.1    Miyoshi, T.2
  • 13
    • 79954616081 scopus 로고    scopus 로고
    • Verification and intercomparison of mesoscale ensemble prediction systems in the Beijing 2008 Olympics Research and Development Project
    • Kunii, M., and Coauthors, 2011: Verification and intercomparison of mesoscale ensemble prediction systems in the Beijing 2008 Olympics Research and Development Project. Tellus, 63A, 531-549, doi:10.1111/j.1600-0870.2011.00512.x.
    • (2011) Tellus , vol.63 A , pp. 531-549
    • Kunii, M.1
  • 14
    • 84864853022 scopus 로고    scopus 로고
    • Estimating the impact of real observations in regional numerical weather prediction using an ensemble Kalman filter
    • Kunii, M., T. Miyoshi, and E. Kalnay, 2012: Estimating the impact of real observations in regional numerical weather prediction using an ensemble Kalman filter. Mon. Wea. Rev., 140, 1975- 1987, doi:10.1175/MWR-D-11-00205.1.
    • (2012) Mon. Wea. Rev , vol.140 , pp. 1975-1987
    • Kunii, M.1    Miyoshi, T.2    Kalnay, E.3
  • 15
    • 79954615574 scopus 로고    scopus 로고
    • The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter
    • Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519-1535, doi:10.1175/2010MWR3570.1.
    • (2011) Mon. Wea. Rev , vol.139 , pp. 1519-1535
    • Miyoshi, T.1
  • 16
    • 34548753140 scopus 로고    scopus 로고
    • Applying a four-dimensional local ensemble transform Kalman filter (4D-LETKF) to the JMA Nonhydrostatic Model (NHM)
    • Miyoshi, T., and K. Aranami, 2006: Applying a four-dimensional local ensemble transform Kalman filter (4D-LETKF) to the JMA Nonhydrostatic Model (NHM). SOLA, 2, 128-131, doi:10.2151/ sola.2006-033.
    • (2006) SOLA , vol.2 , pp. 128-131
    • Miyoshi, T.1    Aranami, K.2
  • 17
    • 34247110575 scopus 로고    scopus 로고
    • Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution
    • Miyoshi, T., and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Wea. Rev., 135, 3841-3861, doi:10.1175/2007MWR1873.1.
    • (2007) Mon. Wea. Rev , vol.135 , pp. 3841-3861
    • Miyoshi, T.1    Yamane, S.2
  • 18
    • 84861117548 scopus 로고    scopus 로고
    • The local ensemble transform Kalman filter with the Weather Research and Forecasting model: Experiments with real observations
    • Miyoshi, T., and M. Kunii, 2012: The local ensemble transform Kalman filter with the Weather Research and Forecasting model: Experiments with real observations. Pure Appl. Geophys., 169, 321-333, doi:10.1007/s00024-011-0373-4.
    • (2012) Pure Appl. Geophys , vol.169 , pp. 321-333
    • Miyoshi, T.1    Kunii, M.2
  • 19
    • 67449138958 scopus 로고    scopus 로고
    • Localizing the error covariance by physical distances within a local ensemble transform Kalman filter (LETKF)
    • Miyoshi, T., S. Yamane, and T. Enomoto, 2007: Localizing the error covariance by physical distances within a local ensemble transform Kalman filter (LETKF). SOLA, 3, 89-92, doi:10.2151/ sola.2007-023.
    • (2007) SOLA , vol.3 , pp. 89-92
    • Miyoshi, T.1    Yamane, S.2    Enomoto, T.3
  • 20
    • 1842731677 scopus 로고    scopus 로고
    • An improved Mellor-Yamada level 3 model with condensation physics: Its design and verification
    • Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level 3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 1-31, doi:10.1023/B: BOUN.0000020164.04146.98.
    • (2004) Bound.-Layer Meteor , vol.112 , pp. 1-31
    • Nakanishi, M.1    Niino, H.2
  • 21
    • 33744492583 scopus 로고    scopus 로고
    • An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog
    • Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397-407, doi:10.1007/s10546-005-9030-8.
    • (2006) Bound.-Layer Meteor , vol.119 , pp. 397-407
    • Nakanishi, M.1    Niino, H.2
  • 22
    • 0034165110 scopus 로고    scopus 로고
    • Large- and meso-a-scale characteristics of meiyu/baiu front associated with intense rainfalls in 1-10 July 1991
    • Ninomiya, K., 2000: Large- and meso-a-scale characteristics of meiyu/baiu front associated with intense rainfalls in 1-10 July 1991. J. Meteor. Soc. Japan, 78, 141-157.
    • (2000) J. Meteor. Soc. Japan , vol.78 , pp. 141-157
    • Ninomiya, K.1
  • 23
    • 84910625320 scopus 로고    scopus 로고
    • Development of cumulus parameterization scheme in the nonhydrostatic mesoscale model at the JapanMeteorologicalAgency
    • Research Actions inAtmospheric and Oceanic Modelling 35, CAS/JSC WGNE
    • Ohmori, S., and Y. Yamada, 2006: Development of cumulus parameterization scheme in the nonhydrostatic mesoscale model at the JapanMeteorologicalAgency. Research Actions inAtmospheric and Oceanic Modelling 35, CAS/JSC WGNE, 2 pp. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2006/ individual-articles/04_Ohmori_Shiro__12487.pdf.]
    • (2006) , pp. 2
    • Ohmori, S.1    Yamada, Y.2
  • 24
    • 8844258829 scopus 로고    scopus 로고
    • A local ensemble Kalman filter for atmospheric data assimilation
    • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415-428, doi:10.1111/ j.1600-0870.2004.00076.x.
    • (2004) Tellus , vol.56 A , pp. 415-428
    • Ott, E.1
  • 25
    • 84861109503 scopus 로고    scopus 로고
    • Data assimilation of the global ocean using the 4D local ensemble transform Kalman filter (4D-LETKF) and the Modular Ocean Model (MOM2)
    • Ph.D. thesis, University of Maryland
    • Penny, S., 2011: Data assimilation of the global ocean using the 4D local ensemble transform Kalman filter (4D-LETKF) and the Modular Ocean Model (MOM2). Ph.D. thesis, University of Maryland, 141 pp. [Available online at http://hdl.handle.net/ 1903/11716.]
    • (2011) , pp. 141
    • Penny, S.1
  • 26
    • 84910610921 scopus 로고    scopus 로고
    • The Japan Meteorological Agency nonhydrostatic model and its application to operation and research
    • I. Yucel, Ed., InTech
    • Saito, K., 2012: The Japan Meteorological Agency nonhydrostatic model and its application to operation and research. Atmospheric Model Applications, I. Yucel, Ed., InTech, 85- 110, doi:10.5772/35368.
    • (2012) Atmospheric Model Applications , pp. 85-110
    • Saito, K.1
  • 27
    • 33646450114 scopus 로고    scopus 로고
    • The operational JMA nonhydrostatic mesoscale model
    • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 1266-1298, doi:10.1175/MWR3120.1.
    • (2006) Mon. Wea. Rev , vol.134 , pp. 1266-1298
    • Saito, K.1
  • 29
    • 84859412720 scopus 로고    scopus 로고
    • Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction
    • Saito, K., H. Seko, M. Kunii, and T. Miyoshi, 2012: Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction. Tellus, 64A, 11594, doi:10.3402/tellusa.v64i0.11594.
    • (2012) Tellus , vol.64 A
    • Saito, K.1    Seko, H.2    Kunii, M.3    Miyoshi, T.4
  • 30
    • 3142698522 scopus 로고    scopus 로고
    • Analysis of the spread-skill relations using the ECMWF Ensemble Prediction System over Europe
    • Scherrer, S. C., C. Appenzeller, P. Eckert, and D. Cattani, 2004: Analysis of the spread-skill relations using the ECMWF Ensemble Prediction System over Europe. Wea. Forecasting, 19, 552-565, doi:10.1175/1520-0434(2004)019,0552:AOTSRU.2.0.CO;2.
    • (2004) Wea. Forecasting , vol.19 , pp. 552-565
    • Scherrer, S.C.1    Appenzeller, C.2    Eckert, P.3    Cattani, D.4
  • 31
    • 77949565531 scopus 로고    scopus 로고
    • Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model
    • Schutgens, N. A. J., T. Miyoshi, T. Takemura, and T. Nakajima, 2010: Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model. Atmos. Chem. Phys., 10, 2561-2576, doi:10.5194/ acp-10-2561-2010.
    • (2010) Atmos. Chem. Phys , vol.10 , pp. 2561-2576
    • Schutgens, N.A.J.1    Miyoshi, T.2    Takemura, T.3    Nakajima, T.4
  • 32
    • 14544301443 scopus 로고    scopus 로고
    • The Regional Oceanic Modeling System: A split-explicit, free-surface, topographyfollowing- coordinate ocean model
    • Shchepetkin, A., and J. C.McWilliams, 2005: The Regional Oceanic Modeling System: A split-explicit, free-surface, topographyfollowing- coordinate ocean model. Ocean Modell., 9, 347-404, doi:10.1016/j.ocemod.2004.08.002.
    • (2005) Ocean Modell , vol.9 , pp. 347-404
    • Shchepetkin, A.1    McWilliams, J.C.2
  • 33
    • 84910638564 scopus 로고    scopus 로고
    • Adescription of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR
    • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005:Adescription of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at http://www. mmm.ucar.edu/wrf/users/docs/arw_v2.pdf.]
    • (2005) , pp. 88
    • Skamarock, W.C.1    Klemp, J.B.2    Dudhia, J.3    Gill, D.O.4    Barker, D.M.5    Wang, W.6    Powers, J.G.7
  • 34
    • 0141571533 scopus 로고    scopus 로고
    • Assimilation of simulated Doppler radar observations with an ensemble Kalman filter
    • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677, doi:10.1175//2555.1.
    • (2003) Mon. Wea. Rev , vol.131 , pp. 1663-1677
    • Snyder, C.1    Zhang, F.2
  • 35
    • 24144494208 scopus 로고    scopus 로고
    • Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments
    • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807, doi:10.1175/MWR2898.1.
    • (2005) Mon. Wea. Rev , vol.133 , pp. 1789-1807
    • Tong, M.1    Xue, M.2
  • 36
    • 0032999101 scopus 로고    scopus 로고
    • The relationship between ensemble spread and ensemble mean skill
    • Whitaker, J. S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126, 3292-3302, doi:10.1175/1520-0493(1998)126,3292: TRBESA.2.0.CO;2.
    • (1998) Mon. Wea. Rev , vol.126 , pp. 3292-3302
    • Whitaker, J.S.1    Loughe, A.F.2
  • 37
    • 2442717392 scopus 로고    scopus 로고
    • Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter
    • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon.Wea. Rev., 132, 1238-1253, doi:10.1175/1520-0493(2004)132,1238:IOIEAO.2.0.CO;2.
    • (2004) Mon.Wea. Rev , vol.132 , pp. 1238-1253
    • Zhang, F.1    Snyder, C.2    Sun, J.3
  • 38
    • 39549118477 scopus 로고    scopus 로고
    • Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system
    • Zhu, Y., and R. Gelaro, 2008: Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system. Mon. Wea. Rev., 136, 335-351, doi:10.1175/MWR3525.1.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 335-351
    • Zhu, Y.1    Gelaro, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.