-
1
-
-
0142113806
-
Nanoscale thermal management
-
Balandin AA. Nanoscale thermal management. IEEE Potentials 2002;21(1): 11-5. http://dx.doi.org/10.1109/45.985321.
-
(2002)
IEEE Potentials
, vol.21
, Issue.1
, pp. 11-15
-
-
Balandin, A.A.1
-
2
-
-
79960644631
-
Thermal properties of graphene and nanostructured carbon materials
-
Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 2011;10: 569-81. http://dx.doi.org/10.1038/nmat3064.
-
(2011)
Nat Mater
, vol.10
, pp. 569-581
-
-
Balandin, A.A.1
-
3
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett 2008;8(3): 902-7. http://dx.doi.org/10.1021/nl0731872.
-
(2008)
Nano Lett
, vol.8
, Issue.3
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
-
4
-
-
77950791436
-
Two-dimensional phonon transport in supported graphene
-
Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, et al. Two-dimensional phonon transport in supported graphene. Science 2010;328(5975): 213-6. http://dx.doi.org/10.1126/science.1184014.
-
(2010)
Science
, vol.328
, Issue.5975
, pp. 213-216
-
-
Seol, J.H.1
Jo, I.2
Moore, A.L.3
Lindsay, L.4
Aitken, Z.H.5
Pettes, M.T.6
-
5
-
-
84861162345
-
Two-dimensional phonon transport in graphene
-
Nika DL, Balandin AA. Two-dimensional phonon transport in graphene. J Phys Condens Matter 2012;24(23): 233203. http://dx.doi.org/10.1088/0953-8984/24/23/233203.
-
(2012)
J Phys Condens Matter
, vol.24
, Issue.23
, pp. 233203
-
-
Nika, D.L.1
Balandin, A.A.2
-
6
-
-
81355136100
-
Mechanism of thermal conductivity reduction in few-layer graphene
-
Singh D, Murthy JY, Fisher TS. Mechanism of thermal conductivity reduction in few-layer graphene. J Appl Phys 2011;110(4): 044317. http://dx.doi.org/10.1063/1.3622300.
-
(2011)
J Appl Phys
, vol.110
, Issue.4
, pp. 044317
-
-
Singh, D.1
Murthy, J.Y.2
Fisher, T.S.3
-
7
-
-
84875714201
-
Divergence of the thermal conductivity in uniaxially strained graphene
-
Pereira LFC, Donadio D. Divergence of the thermal conductivity in uniaxially strained graphene. Phys Rev B 2013;87: 125424-30. http://dx.doi.org/10.1103/PhysRevB.87.125424.
-
(2013)
Phys Rev B
, vol.87
, pp. 125424-125430
-
-
Pereira, L.F.C.1
Donadio, D.2
-
8
-
-
65549156874
-
Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering
-
Nika DL, Pokatilov EP, Askerov AS, Balandin AA. Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering. Phys Rev B 2009;79: 155413-25. http://dx.doi.org/10.1103/PhysRevB.79.155413.
-
(2009)
Phys Rev B
, vol.79
, pp. 155413-155425
-
-
Nika, D.L.1
Pokatilov, E.P.2
Askerov, A.S.3
Balandin, A.A.4
-
9
-
-
79951530620
-
First-principles study of heat transport properties of graphene nanoribbons
-
Tan ZW, Wang J-S, Gan CK. First-principles study of heat transport properties of graphene nanoribbons. Nano Lett 2011;11(1): 214-9. http://dx.doi.org/10.1021/nl103508m .
-
(2011)
Nano Lett
, vol.11
, Issue.1
, pp. 214-219
-
-
Tan, Z.W.1
Wang, J.-S.2
Gan, C.K.3
-
10
-
-
68949143372
-
First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene
-
Kong BD, Paul S, Nardelli MB, Kim KW. First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Phys Rev B 2009;80: 033406-10. http://dx.doi.org/10.1103/PhysRevB.80.033406.
-
(2009)
Phys Rev B
, vol.80
, pp. 033406-033410
-
-
Kong, B.D.1
Paul, S.2
Nardelli, M.B.3
Kim, K.W.4
-
11
-
-
65949089154
-
Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite
-
Nika DL, Ghosh S, Pokatilov EP, Balandin AA. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl Phys Lett 2009;94(20): 203103. http://dx.doi.org/10.1063/1.3136860.
-
(2009)
Appl Phys Lett
, vol.94
, Issue.20
, pp. 203103
-
-
Nika, D.L.1
Ghosh, S.2
Pokatilov, E.P.3
Balandin, A.A.4
-
12
-
-
0036537725
-
Comparison of atomiclevel simulation methods for computing thermal conductivity
-
Schelling PK, Phillpot SR, Keblinski P. Comparison of atomiclevel simulation methods for computing thermal conductivity. Phys Rev B 2002;65: 144306-18. http://dx.doi.org/10.1103/PhysRevB.65.144306.
-
(2002)
Phys Rev B
, vol.65
, pp. 144306-144318
-
-
Schelling, P.K.1
Phillpot, S.R.2
Keblinski, P.3
-
13
-
-
0031559226
-
A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
-
Müller-Plathe F.A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 1997;106(14): 6082-5. http://dx.doi.org/10.1063/1.473271.
-
(1997)
J Chem Phys
, vol.106
, Issue.14
, pp. 6082-6085
-
-
Müller-Plathe, F.1
-
14
-
-
80051800696
-
A theoretical analysis of the thermal conductivity of hydrogenated graphene
-
Pei Q-X, Sha Z-D, Zhang Y-W. A theoretical analysis of the thermal conductivity of hydrogenated graphene. Carbon 2011;49(14): 4752-9. http://dx.doi.org/10.1016/j.carbon.2011.06.083.
-
(2011)
Carbon
, vol.49
, Issue.14
, pp. 4752-4759
-
-
Pei, Q.-X.1
Sha, Z.-D.2
Zhang, Y.-W.3
-
15
-
-
79952951889
-
Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study
-
Zhong W-R, Zhang M-P, Ai B-Q, Zheng D-Q. Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study. Appl Phys Lett 2011;98(11): 113107. http://dx.doi.org/10.1063/1.3567415.
-
(2011)
Appl Phys Lett
, vol.98
, Issue.11
, pp. 113107
-
-
Zhong, W.-R.1
Zhang, M.-P.2
Ai, B.-Q.3
Zheng, D.-Q.4
-
16
-
-
80053607067
-
Thermal transport in graphene and effects of vacancy defects
-
Zhang H, Lee G, Cho K. Thermal transport in graphene and effects of vacancy defects. Phys Rev B 2011;84: 115460-5. http://dx.doi.org/10.1103/PhysRevB.84.115460.
-
(2011)
Phys Rev B
, vol.84
, pp. 115460-115465
-
-
Zhang, H.1
Lee, G.2
Cho, K.3
-
17
-
-
79955567705
-
Graphane sheets and crystals under pressure
-
Wen X-D, Hand L, Labet V, Yang T, Hoffmann R, Ashcroft NW, et al. Graphane sheets and crystals under pressure. Proc Natl Acad Sci 2011;108(17): 6833-7. http://dx.doi.org/10.1073/pnas.1103145108.
-
(2011)
Proc Natl Acad Sci
, vol.108
, Issue.17
, pp. 6833-6837
-
-
Wen, X.-D.1
Hand, L.2
Labet, V.3
Yang, T.4
Hoffmann, R.5
Ashcroft, N.W.6
-
18
-
-
59149091893
-
Control of graphene's properties by reversible hydrogenation: Evidence for graphane
-
Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 2009;323(5914): 610-3. http://dx.doi.org/10.1126/science.1167130.
-
(2009)
Science
, vol.323
, Issue.5914
, pp. 610-613
-
-
Elias, D.C.1
Nair, R.R.2
Mohiuddin, T.M.G.3
Morozov, S.V.4
Blake, P.5
Halsall, M.P.6
-
19
-
-
78650887851
-
Elastic properties of hydrogenated graphene
-
Cadelano E, Palla PL, Giordano S, Colombo L. Elastic properties of hydrogenated graphene. Phys Rev B 2010;82: 235414-22. http://dx.doi.org/10.1103/PhysRevB.82.235414.
-
(2010)
Phys Rev B
, vol.82
, pp. 235414-235422
-
-
Cadelano, E.1
Palla, P.L.2
Giordano, S.3
Colombo, L.4
-
20
-
-
0141788281
-
Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene
-
Sluiter MHF, Kawazoe Y. Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene. Phys Rev B 2003;68: 085410-7. http://dx.doi.org/10.1103/PhysRevB.68.085410.
-
(2003)
Phys Rev B
, vol.68
, pp. 085410-095417
-
-
Sluiter, M.H.F.1
Kawazoe, Y.2
-
21
-
-
84880778302
-
Thermal conductivity from approach-to-equilibrium molecular dynamics
-
Lampin E, Palla PL, Francioso P-A, Cleri F. Thermal conductivity from approach-to-equilibrium molecular dynamics. J Appl Phys 2013;114(3): 033525. http://dx.doi.org/10.1063/1.4815945.
-
(2013)
J Appl Phys
, vol.114
, Issue.3
, pp. 033525
-
-
Lampin, E.1
Palla, P.L.2
Francioso, P.-A.3
Cleri, F.4
-
22
-
-
84904790601
-
Calculating thermal conductivity in a transient conduction regime: Theory and implementation
-
Melis C, Dettori R, Vandermeulen S, Colombo L. Calculating thermal conductivity in a transient conduction regime: Theory and implementation. Eur Phys J B 2014;87(4): 96. http://dx.doi.org/10.1140/epjb/e2014-50119-0.
-
(2014)
Eur Phys J B
, vol.87
, Issue.4
, pp. 96
-
-
Melis, C.1
Dettori, R.2
Vandermeulen, S.3
Colombo, L.4
-
23
-
-
64849086530
-
Singular behavior of the debye-waller factor of graphene
-
Tewary VK, Yang B. Singular behavior of the debye-waller factor of graphene. Phys Rev B 2009;79: 125416-21. http://dx.doi.org/10.1103/PhysRevB.79.125416.
-
(2009)
Phys Rev B
, vol.79
, pp. 125416-125421
-
-
Tewary, V.K.1
Yang, B.2
-
24
-
-
84894422626
-
Lattice thermal conductivity of Si(1-x)Gex nanocomposites
-
Melis C, Colombo L. Lattice thermal conductivity of Si(1-x)Gex nanocomposites. Phys Rev Lett 2014;112: 065901-6. http://dx.doi.org/10.1103/PhysRevLett.112.065901.
-
(2014)
Phys Rev Lett
, vol.112
, pp. 065901-065906
-
-
Melis, C.1
Colombo, L.2
-
25
-
-
0002467378
-
Fast parallel algorithms for short-range molecular dynamics
-
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 1995;117(1): 1-19. http://dx.doi.org/10.1006/jcph.1995.1039.
-
(1995)
J Comp Phys
, vol.117
, Issue.1
, pp. 1-19
-
-
Plimpton, S.1
-
26
-
-
0037017208
-
A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
-
Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 2002;14(4): 783-802. http://dx.doi.org/10.1088/0953-8984/14/4/312.
-
(2002)
J Phys Condens Matter
, vol.14
, Issue.4
, pp. 783-802
-
-
Brenner, D.W.1
Shenderova, O.A.2
Harrison, J.A.3
Stuart, S.J.4
Ni, B.5
Sinnott, S.B.6
-
27
-
-
0043283857
-
Theory of thermal conduction in thin ceramic films
-
Klemens P. Theory of thermal conduction in thin ceramic films. Int J Thermophys 2001;22(1): 265-75. http://dx.doi.org/10.1023/A: 1006776107140.
-
(2001)
Int J Thermophys
, vol.22
, Issue.1
, pp. 265-75
-
-
Klemens, P.1
-
28
-
-
0028045774
-
Thermal conductivity of graphite in the basal plane
-
Klemens P, Pedraza D. Thermal conductivity of graphite in the basal plane. Carbon 1994;32(4): 735-41. http://dx.doi.org/10.1016/0008-6223(94)90096-5.
-
(1994)
Carbon
, vol.32
, Issue.4
, pp. 735-741
-
-
Klemens, P.1
Pedraza, D.2
-
29
-
-
84898823803
-
Length-dependent thermal conductivity in suspended singlelayer graphene
-
Xu X, Pereira LFC, Wang Y, Wu J, Zhang K, Zhao X, et al. Length-dependent thermal conductivity in suspended singlelayer graphene. Nat Commun 2014;5: 3689. http://dx.doi.org/10.1038/ncomms4689.
-
(2014)
Nat Commun
, vol.5
, pp. 3689
-
-
Xu, X.1
Pereira, L.F.C.2
Wang, Y.3
Wu, J.4
Zhang, K.5
Zhao, X.6
-
30
-
-
84862270656
-
Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene
-
Bonini N, Garg J, Marzari N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett 2012;12(6): 2673-8. http://dx.doi.org/10.1021/nl202694m.
-
(2012)
Nano Lett
, vol.12
, Issue.6
, pp. 2673-2678
-
-
Bonini, N.1
Garg, J.2
Marzari, N.3
-
31
-
-
84878985911
-
Anharmonic properties from a generalized third-order ab initio approach: Theory and applications to graphite and graphene
-
Paulatto L, Mauri F, Lazzeri M. Anharmonic properties from a generalized third-order ab initio approach: Theory and applications to graphite and graphene. Phys Rev B 2013;87: 214303-11. http://dx.doi.org/10.1103/PhysRevB.87.214303.
-
(2013)
Phys Rev B
, vol.87
, pp. 214303-21411
-
-
Paulatto, L.1
Mauri, F.2
Lazzeri, M.3
-
32
-
-
84899748902
-
Phonon thermal transport in strained and unstrained graphene from first principles
-
Lindsay L, Li W, Carrete J, Mingo N, Broido DA, Reinecke TL. Phonon thermal transport in strained and unstrained graphene from first principles. Phys Rev B 2014;89: 155426-34. http://dx.doi.org/10.1103/PhysRevB.89.155426.
-
(2014)
Phys Rev B
, vol.89
, pp. 155426-155434
-
-
Lindsay, L.1
Li, W.2
Carrete, J.3
Mingo, N.4
Broido, D.A.5
Reinecke, T.L.6
-
33
-
-
79961189918
-
Flexural phonons and thermal transport in multilayer graphene and graphite
-
Lindsay L, Broido DA, Mingo N. Flexural phonons and thermal transport in multilayer graphene and graphite. Phys Rev B 2011;83: 235428-33. http://dx.doi.org/10.1103/PhysRevB.83.235428.
-
(2011)
Phys Rev B
, vol.83
, pp. 235428-235433
-
-
Lindsay, L.1
Broido, D.A.2
Mingo, N.3
-
34
-
-
81355136100
-
On the accuracy of classical and long wavelength approximations for phonon transport in graphene
-
Singh D, Murthy JY, Fisher TS. On the accuracy of classical and long wavelength approximations for phonon transport in graphene. J Appl Phys 2011;110(11): 13510. http://dx.doi.org/10.1063/1.3665226.
-
(2011)
J Appl Phys
, vol.110
, Issue.11
, pp. 13510
-
-
Singh, D.1
Murthy, J.Y.2
Fisher, T.S.3
-
35
-
-
81355136100
-
Mechanism of thermal conductivity reduction in few-layer graphene
-
Singh D, Murthy JY, Fisher TS. Mechanism of thermal conductivity reduction in few-layer graphene. J Appl Phys 2011;110(4): 044317. http://dx.doi.org/10.1063/1.3622300.
-
(2011)
J Appl Phys
, vol.110
, Issue.4
, pp. 044317
-
-
Singh, D.1
Murthy, J.Y.2
Fisher, T.S.3
-
36
-
-
80052407674
-
Effect of substrate modes on thermal transport in supported graphene
-
Ong Z-Y, Pop E. Effect of substrate modes on thermal transport in supported graphene. Phys Rev B 2011;84: 075471-8. http://dx.doi.org/10.1103/PhysRevB.84.075471.
-
(2011)
Phys Rev B
, vol.84
, pp. 075471-075478
-
-
Ong, Z.-Y.1
Pop, E.2
-
37
-
-
78649721720
-
Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
-
Lindsay L, Broido DA. Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 2010;81: 205441-7. http://dx.doi.org/10.1103/PhysRevB.81.205441.
-
(2010)
Phys Rev B
, vol.81
, pp. 205441-205447
-
-
Lindsay, L.1
Broido, D.A.2
-
38
-
-
42349113188
-
Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
-
Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 2008;92(15): 151911. http://dx.doi.org/10.1063/1.2907977.
-
(2008)
Appl Phys Lett
, vol.92
, Issue.15
, pp. 151911
-
-
Ghosh, S.1
Calizo, I.2
Teweldebrhan, D.3
Pokatilov, E.P.4
Nika, D.L.5
Balandin, A.A.6
-
39
-
-
33747595437
-
Practical greens function approach to the simulation of elastic semi-infinite solids
-
CampañáC, Müser MH. Practical greens function approach to the simulation of elastic semi-infinite solids. Phys Rev B 2006;74: 075420-35. http://dx.doi.org/10.1103/PhysRevB.74.075420.
-
(2006)
Phys Rev B
, vol.74
, pp. 075420-075435
-
-
Campañá, C.1
Müser, M.H.2
-
40
-
-
67349132242
-
Implementation of green's function molecular dynamics: An extension to LAMMPS
-
Kong LT, Bartels G, CampañáC, Denniston C, Müser MH. Implementation of green's function molecular dynamics: An extension to LAMMPS. Comp Phys Commun 2009;180(6): 1004-10. http://dx.doi.org/10.1016/j.cpc.2008.12.035.
-
(2009)
Comp Phys Commun
, vol.180
, Issue.6
, pp. 1004-1010
-
-
Kong, L.T.1
Bartels, G.2
Campañá, C.3
Denniston, C.4
Müser, M.H.5
-
41
-
-
84862098769
-
Reduction of spectral phonon relaxation times from suspended to supported graphene
-
Qiu B, Ruan X. Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl Phys Lett 2012;100(19): 193101. http://dx.doi.org/10.1063/1.4712041.
-
(2012)
Appl Phys Lett
, vol.100
, Issue.19
, pp. 193101
-
-
Qiu, B.1
Ruan, X.2
|