메뉴 건너뛰기




Volumn 351, Issue 12, 2014, Pages 5455-5466

Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models

Author keywords

[No Author keywords available]

Indexed keywords

ITERATIVE METHODS; NONLINEAR DYNAMICAL SYSTEMS;

EID: 84910142813     PISSN: 00160032     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfranklin.2014.09.025     Document Type: Article
Times cited : (53)

References (43)
  • 1
    • 84888128649 scopus 로고    scopus 로고
    • Several gradient parameter estimation algorithms for dual-rate sampled systems
    • J. Chen Several gradient parameter estimation algorithms for dual-rate sampled systems J. Frankl. Inst. 351 1 2014 543 554
    • (2014) J. Frankl. Inst. , vol.351 , Issue.1 , pp. 543-554
    • Chen, J.1
  • 2
    • 79551472381 scopus 로고    scopus 로고
    • Identification methods for Hammerstein nonlinear systems
    • F. Ding, X. Liu, and G. Liu Identification methods for Hammerstein nonlinear systems Digit. Signal Process. 21 2 2011 215 238
    • (2011) Digit. Signal Process. , vol.21 , Issue.2 , pp. 215-238
    • Ding, F.1    Liu, X.2    Liu, G.3
  • 3
    • 10444235751 scopus 로고    scopus 로고
    • Identification of nonlinear systems using a piecewise-linear Hammerstein model
    • G. Dolanc, and S. Strmcnik Identification of nonlinear systems using a piecewise-linear Hammerstein model Syst. Control Lett. 54 2 2005 145 158
    • (2005) Syst. Control Lett. , vol.54 , Issue.2 , pp. 145-158
    • Dolanc, G.1    Strmcnik, S.2
  • 4
    • 4344636960 scopus 로고    scopus 로고
    • Combined parametric-nonparametric identification of Hammerstein systems
    • Z. Hasiewicz, and G. Mzyk Combined parametric-nonparametric identification of Hammerstein systems IEEE Trans. Autom. Control 49 2004 1370 1375
    • (2004) IEEE Trans. Autom. Control , vol.49 , pp. 1370-1375
    • Hasiewicz, Z.1    Mzyk, G.2
  • 5
    • 84887321099 scopus 로고    scopus 로고
    • Auxiliary model based least squares parameter estimation algorithm for feedback nonlinear systems using the hierarchical identification principle
    • P. Hu, F. Ding, and J. Sheng Auxiliary model based least squares parameter estimation algorithm for feedback nonlinear systems using the hierarchical identification principle J. Frankl. Inst. 350 10 2013 3248 3259
    • (2013) J. Frankl. Inst. , vol.350 , Issue.10 , pp. 3248-3259
    • Hu, P.1    Ding, F.2    Sheng, J.3
  • 6
    • 0346121682 scopus 로고    scopus 로고
    • Neural network approach for identification of Hammerstein systems
    • A. Janczak Neural network approach for identification of Hammerstein systems Int. J. Control 76 2003 1749 1766
    • (2003) Int. J. Control , vol.76 , pp. 1749-1766
    • Janczak, A.1
  • 7
    • 84891559805 scopus 로고    scopus 로고
    • Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems
    • J. Li, F. Ding, and L. Hua Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems Nonlinear Dyn. 75 1-2 2014 235 245
    • (2014) Nonlinear Dyn. , vol.75 , Issue.12 , pp. 235-245
    • Li, J.1    Ding, F.2    Hua, L.3
  • 8
    • 33845936054 scopus 로고    scopus 로고
    • Iterative identification of Hammerstein systems
    • Y. Liu, and E.W. Bai Iterative identification of Hammerstein systems Automatica 43 2007 346 354
    • (2007) Automatica , vol.43 , pp. 346-354
    • Liu, Y.1    Bai, E.W.2
  • 9
    • 33645691922 scopus 로고    scopus 로고
    • On the identification of Hammerstein systems having saturation-like functions with positive slopes
    • R. Pupeikis On the identification of Hammerstein systems having saturation-like functions with positive slopes Informatica 17 2006 55 68
    • (2006) Informatica , vol.17 , pp. 55-68
    • Pupeikis, R.1
  • 10
    • 84870056674 scopus 로고    scopus 로고
    • Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle
    • D. Wang, F. Ding, and Y. Chu Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle Inf. Sci. 222 2013 203 212
    • (2013) Inf. Sci. , vol.222 , pp. 203-212
    • Wang, D.1    Ding, F.2    Chu, Y.3
  • 11
    • 84884584422 scopus 로고    scopus 로고
    • Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm
    • X. Xu, F. Wang, G. Liu, and F. Qian Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm IET Signal Process. 7 8 2013 766 773
    • (2013) IET Signal Process. , vol.7 , Issue.8 , pp. 766-773
    • Xu, X.1    Wang, F.2    Liu, G.3    Qian, F.4
  • 12
    • 84897893213 scopus 로고    scopus 로고
    • A new deterministic identification approach to Hammerstein systems
    • C. Yu, C. Zhang, and L. Xie A new deterministic identification approach to Hammerstein systems IEEE Trans. Signal Process. 62 1 2014 131 140
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.1 , pp. 131-140
    • Yu, C.1    Zhang, C.2    Xie, L.3
  • 13
    • 61849170639 scopus 로고    scopus 로고
    • Towards identification of Wiener systems with the least amount of a priori information: IIR cases
    • E.W. Bai, and J. Reyland Jr. Towards identification of Wiener systems with the least amount of a priori information: IIR cases Automatica 45 4 2009 956 964
    • (2009) Automatica , vol.45 , Issue.4 , pp. 956-964
    • Bai, E.W.1    Reyland, J.2
  • 14
    • 33645004283 scopus 로고    scopus 로고
    • Recursive identification for Wiener model with discontinuous piece-wise linear function
    • H.F. Chen Recursive identification for Wiener model with discontinuous piece-wise linear function IEEE Trans. Autom. Control 51 2006 390 400
    • (2006) IEEE Trans. Autom. Control , vol.51 , pp. 390-400
    • Chen, H.F.1
  • 15
    • 84893704037 scopus 로고    scopus 로고
    • Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities
    • J. Chen, X. Lu, and R. Ding Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities J. Vib. Control 20 4 2014 634 640
    • (2014) J. Vib. Control , vol.20 , Issue.4 , pp. 634-640
    • Chen, J.1    Lu, X.2    Ding, R.3
  • 17
    • 67349149042 scopus 로고    scopus 로고
    • An analytic geometry approach to Wiener system frequency identification
    • F. Giri, Y. Rochdi, and F.Z. Chaoui An analytic geometry approach to Wiener system frequency identification IEEE Trans. Autom. Control 54 4 2009 683 696
    • (2009) IEEE Trans. Autom. Control , vol.54 , Issue.4 , pp. 683-696
    • Giri, F.1    Rochdi, Y.2    Chaoui, F.Z.3
  • 18
    • 33847294856 scopus 로고    scopus 로고
    • Instrumental variables approach to identification of a class of MIMO Wiener systems
    • A. Janczak Instrumental variables approach to identification of a class of MIMO Wiener systems Nonlinear Dyn. 48 2007 275 284
    • (2007) Nonlinear Dyn. , vol.48 , pp. 275-284
    • Janczak, A.1
  • 19
    • 84876227628 scopus 로고    scopus 로고
    • On intelligent extraction of an internal signal in a Wiener system consisting of a linear block followed by hard-nonlinearity
    • K. Kazlauskas, and R. Pupeikis On intelligent extraction of an internal signal in a Wiener system consisting of a linear block followed by hard-nonlinearity Informatica 24 1 2013 35 58
    • (2013) Informatica , vol.24 , Issue.1 , pp. 35-58
    • Kazlauskas, K.1    Pupeikis, R.2
  • 21
    • 79954501903 scopus 로고    scopus 로고
    • On recursive parametric identification of Wiener systems
    • R. Pupeikis On recursive parametric identification of Wiener systems Inf. Technol. Control 40 1 2011 21 28
    • (2011) Inf. Technol. Control , vol.40 , Issue.1 , pp. 21-28
    • Pupeikis, R.1
  • 22
    • 79551473739 scopus 로고    scopus 로고
    • Least squares based and gradient based iterative identification for Wiener nonlinear systems
    • D. Wang, and F. Ding Least squares based and gradient based iterative identification for Wiener nonlinear systems Signal Process. 91 5 2011 1182 1189
    • (2011) Signal Process. , vol.91 , Issue.5 , pp. 1182-1189
    • Wang, D.1    Ding, F.2
  • 24
    • 73949132401 scopus 로고    scopus 로고
    • Recursive identification algorithm for dynamic systems with output backlash and its convergence
    • R. Dong, Q. Tan, and Y. Tan Recursive identification algorithm for dynamic systems with output backlash and its convergence Int. J. Appl. Math. Comput. Sci. 19 4 2009 631 638
    • (2009) Int. J. Appl. Math. Comput. Sci. , vol.19 , Issue.4 , pp. 631-638
    • Dong, R.1    Tan, Q.2    Tan, Y.3
  • 25
    • 84871327646 scopus 로고    scopus 로고
    • Frequency identification of nonparametric Wiener systems containing backlash nonlinearities
    • F. Giri, Y. Rochdi, A. Brouri, A. Radouane, and F.Z. Chaoui Frequency identification of nonparametric Wiener systems containing backlash nonlinearities Automatica 49 2013 124 137
    • (2013) Automatica , vol.49 , pp. 124-137
    • Giri, F.1    Rochdi, Y.2    Brouri, A.3    Radouane, A.4    Chaoui, F.Z.5
  • 26
    • 77952931365 scopus 로고    scopus 로고
    • Identification of cascade systems with backlash
    • J. Vörös Identification of cascade systems with backlash Int. J. Control 83 6 2010 1117 1124
    • (2010) Int. J. Control , vol.83 , Issue.6 , pp. 1117-1124
    • Vörös, J.1
  • 27
    • 0036604581 scopus 로고    scopus 로고
    • A blind approach to the Hammerstein-Wiener model identification
    • E.W. Bai A blind approach to the Hammerstein-Wiener model identification Automatica 38 2002 967 979
    • (2002) Automatica , vol.38 , pp. 967-979
    • Bai, E.W.1
  • 28
    • 0032022209 scopus 로고    scopus 로고
    • An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
    • E.W. Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems Automatica 34 1998 333 338
    • (1998) Automatica , vol.34 , pp. 333-338
    • Bai, E.W.1
  • 29
    • 3142613723 scopus 로고    scopus 로고
    • Hammerstein-Wiener system estimator initialization
    • P. Crama, and J. Schoukens Hammerstein-Wiener system estimator initialization Automatica 40 2004 1543 1550
    • (2004) Automatica , vol.40 , pp. 1543-1550
    • Crama, P.1    Schoukens, J.2
  • 30
    • 55449128362 scopus 로고    scopus 로고
    • An iterative method for Hammerstein-Wiener systems parameter identification
    • J. Vörös An iterative method for Hammerstein-Wiener systems parameter identification J. Electric. Eng. 55 11-12 2004 328 331
    • (2004) J. Electric. Eng. , vol.55 , Issue.1112 , pp. 328-331
    • Vörös, J.1
  • 31
    • 84867831752 scopus 로고    scopus 로고
    • Hierarchical least squares estimation algorithm for Hammerstein-Wiener systems
    • D. Wang, and F. Ding Hierarchical least squares estimation algorithm for Hammerstein-Wiener systems IEEE Signal Process. Lett. 19 12 2012 825 828
    • (2012) IEEE Signal Process. Lett. , vol.19 , Issue.12 , pp. 825-828
    • Wang, D.1    Ding, F.2
  • 32
    • 84880911720 scopus 로고    scopus 로고
    • Recursive identification for Hammerstein-Wiener systems with dead-zone input nonlinearity
    • F. Yu, Z. Mao, and M. Jia Recursive identification for Hammerstein-Wiener systems with dead-zone input nonlinearity J. Process Control 23 8 2013 1108 1115
    • (2013) J. Process Control , vol.23 , Issue.8 , pp. 1108-1115
    • Yu, F.1    Mao, Z.2    Jia, M.3
  • 33
    • 77957583024 scopus 로고    scopus 로고
    • Compound operator decomposition and its application to Hammerstein and Wiener systems
    • Springer-Verlag Berlin Heidelberg
    • J. Vörös, Compound operator decomposition and its application to Hammerstein and Wiener systems, Block-oriented Nonlinear System Identification, Lecture Notes in Control and Information Sciences, Vol. 404, Springer-Verlag Berlin Heidelberg, 35-51, 2010.
    • (2010) Block-oriented Nonlinear System Identification, Lecture Notes in Control and Information Sciences , vol.404 , pp. 35-51
    • Vörö1
  • 34
    • 0036247624 scopus 로고    scopus 로고
    • Modeling and parameter identification of systems with multisegment piecewise-linear characteristics
    • J. Vörös Modeling and parameter identification of systems with multisegment piecewise-linear characteristics IEEE Trans. Autom. Control 47 1 2002 184 188
    • (2002) IEEE Trans. Autom. Control , vol.47 , Issue.1 , pp. 184-188
    • Vörös, J.1
  • 35
    • 84910137501 scopus 로고    scopus 로고
    • Parameter identification of static and dynamic nonlinear systems with saturations
    • J. Vörös Parameter identification of static and dynamic nonlinear systems with saturations J. Electric. Eng. 54 3-4 2003 78 82
    • (2003) J. Electric. Eng. , vol.54 , Issue.34 , pp. 78-82
    • Vörös, J.1
  • 36
    • 84863714044 scopus 로고    scopus 로고
    • Parametric identification of systems with general backlash
    • J. Vörös Parametric identification of systems with general backlash Informatica 23 2 2012 283 298
    • (2012) Informatica , vol.23 , Issue.2 , pp. 283-298
    • Vörös, J.1
  • 37
    • 84872876260 scopus 로고    scopus 로고
    • Recursive identification of nonlinear cascade systems with time-varying general input backlash
    • (art. no. 014504) (5 pp.)
    • J. Vörös Recursive identification of nonlinear cascade systems with time-varying general input backlash (art. no. 014504) J. Dyn. Syst. Meas. Control-Trans. ASME 135 1 2013 (5 pp.)
    • (2013) J. Dyn. Syst. Meas. Control-Trans. ASME , vol.135 , Issue.1
    • Vörös, J.1
  • 40
    • 84891085294 scopus 로고    scopus 로고
    • Recursive least squares algorithm for nonlinear systems with piece-wise linearities
    • H.J. Yuan Recursive least squares algorithm for nonlinear systems with piece-wise linearities Appl. Mech. Mater. 475-476 2014 960 963
    • (2014) Appl. Mech. Mater. , vol.475-476 , pp. 960-963
    • Yuan, H.J.1
  • 41
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • S. Yin, S.X. Ding, A. Haghani, H. Hao, and P. Zhang A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process J. Process Control 22 9 2012 1567 1581
    • (2012) J. Process Control , vol.22 , Issue.9 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 42
    • 84885571740 scopus 로고    scopus 로고
    • Real-time implementation of fault-tolerant control systems with performance optimization
    • S. Yin, H. Luo, and S.X. Ding Real-time implementation of fault-tolerant control systems with performance optimization IEEE Trans. Ind. Electron. 61 5 2014 2402 2411
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.5 , pp. 2402-2411
    • Yin, S.1    Luo, H.2    Ding, S.X.3
  • 43
    • 84901008659 scopus 로고    scopus 로고
    • Study on support vector machine-based fault detection in tennessee eastman process
    • (Article ID 836895) (8 pp.)
    • S. Yin, X. Gao, H.R. Karimi, and X. Zhu Study on support vector machine-based fault detection in tennessee eastman process (Article ID 836895) Abstr. Appl. Anal. 2014 2014 (8 pp.)
    • (2014) Abstr. Appl. Anal. , vol.2014
    • Yin, S.1    Gao, X.2    Karimi, H.R.3    Zhu, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.