-
1
-
-
63149102006
-
Identification of temporal association rules from time-series microarray data sets
-
H. Nam, K. Lee, and D. Lee, "Identification of temporal association rules from time-series microarray data sets," BMC Bioinformatics, vol. 10, no. suppl. 3, p. S6, 2009.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. S6
-
-
Nam, H.1
Lee, K.2
Lee, D.3
-
2
-
-
33845437662
-
Learning recurrent behaviors from heterogeneous multivariate time-series
-
F. Duchene, C. Garbay, and V. Rialle, "Learning recurrent behaviors from heterogeneous multivariate time-series," J. Artif. Intell. Med. Archive, vol. 39, no. 1, pp. 25-47, 2007.
-
(2007)
J. Artif. Intell. Med. Archive
, vol.39
, Issue.1
, pp. 25-47
-
-
Duchene, F.1
Garbay, C.2
Rialle, V.3
-
3
-
-
84926649111
-
Mining climate and remote sensing time series to discover the most relevant climate patterns
-
L. Romani, A.- Avila, J. Zullo, C. Traina, and A. Traina, "Mining climate and remote sensing time series to discover the most relevant climate patterns," in Proc. Brazilian Symp. Databases, 2009, pp. 181-195.
-
(2009)
Proc. Brazilian Symp. Databases
, pp. 181-195
-
-
Romani, L.1
Avila, A.2
Zullo, J.3
Traina, C.4
Traina, A.5
-
4
-
-
0347900774
-
Sequential association rule mining with time lags
-
S. Harms and J. Deogun, "Sequential association rule mining with time lags," J. Intell. Inf. Syst., vol. 22, no. 1, pp. 7-22, 2004.
-
(2004)
J. Intell. Inf. Syst.
, vol.22
, Issue.1
, pp. 7-22
-
-
Harms, S.1
Deogun, J.2
-
5
-
-
78649672225
-
A review on time series data mining
-
T. Fu, "A review on time series data mining," Eng. Appl. AI, vol. 24, pp. 164-181, 2011.
-
(2011)
Eng. Appl. AI
, vol.24
, pp. 164-181
-
-
Fu, T.1
-
6
-
-
33646807766
-
A survey of temporal data mining
-
S. Laxman and P. S. Sastry, "A survey of temporal data mining," Sadhana, vol. 31, no. 2, pp. 173-198, 2006.
-
(2006)
Sadhana
, vol.31
, Issue.2
, pp. 173-198
-
-
Laxman, S.1
Sastry, P.S.2
-
7
-
-
0002317477
-
Identifying distinctive subsequences in multivariate time series by clustering
-
T. Oates, "Identifying distinctive subsequences in multivariate time series by clustering," in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 1999, pp. 322-326.
-
(1999)
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining
, pp. 322-326
-
-
Oates, T.1
-
8
-
-
6344252433
-
PERUSE: An unsupervised algorithm for finding recurring patterns in time series
-
T. Oates, "PERUSE: An unsupervised algorithm for finding recurring patterns in time series," in Proc. Int. Conf. Data Mining, 2002, pp. 330-337.
-
(2002)
Proc. Int. Conf. Data Mining
, pp. 330-337
-
-
Oates, T.1
-
9
-
-
15544364892
-
Discovery of time-series motif from multi-dimensional data based on MDL principle
-
Y. Tanaka, K. Iwamoto, and K. Uehara, "Discovery of time-series motif from multi-dimensional data based on MDL principle," Mach. Learn., vol. 58, no. 2, pp. 269-300, 2005.
-
(2005)
Mach. Learn.
, vol.58
, Issue.2
, pp. 269-300
-
-
Tanaka, Y.1
Iwamoto, K.2
Uehara, K.3
-
10
-
-
84880902891
-
Improving activity discovery with automatic neighborhood estimation
-
D. Minnen, T. Starner, I. A. Essa, and C. L. Isbell Jr., "Improving activity discovery with automatic neighborhood estimation," in Proc. 20th Int. Joint Conf. Artif. Intell., 2007, pp. 2814-2819.
-
(2007)
Proc. 20th Int. Joint Conf. Artif. Intell.
, pp. 2814-2819
-
-
Minnen, D.1
Starner, T.2
Essa, I.A.3
Isbell, C.L.4
-
11
-
-
52649179212
-
Probabilistic discovery of time series motifs
-
B. Y. Chiu, E. J. Keogh, and S. Lonardi, "Probabilistic discovery of time series motifs," in Proc. 9th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2003, pp. 493-498.
-
(2003)
Proc. 9th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 493-498
-
-
Chiu, B.Y.1
Keogh, E.J.2
Lonardi, S.3
-
12
-
-
36348977475
-
Discovering multivariate motifs using subsequence density estimation and greedy mixture learning
-
D. Minnen, C. L. Isbell Jr., I. A. Essa, and T. Starner, "Discovering multivariate motifs using subsequence density estimation and greedy mixture learning," in Proc. 22nd Nat. Conf. Artif. Intell., 2007, pp. 615-620.
-
(2007)
Proc. 22nd Nat. Conf. Artif. Intell.
, pp. 615-620
-
-
Minnen, D.1
Isbell, C.L.2
Essa, I.A.3
Starner, T.4
-
13
-
-
49749084330
-
Detecting subdimensional motifs: An efficient algorithm for generalized multivariate pattern discovery
-
D. Minnen, C. L. Isbell, I. A. Essa, and T. Starner, "Detecting subdimensional motifs: An efficient algorithm for generalized multivariate pattern discovery," in Proc. Int. Conf. Data Mining, 2007, pp. 601-606.
-
(2007)
Proc. Int. Conf. Data Mining
, pp. 601-606
-
-
Minnen, D.1
Isbell, C.L.2
Essa, I.A.3
Starner, T.4
-
14
-
-
38649097589
-
Efficient computations of gapped string kernels based on suffix kernel
-
C. Yin, S. Tian, S. Mu, and C. Shao, "Efficient computations of gapped string kernels based on suffix kernel," Neurocomputing, vol. 71, pp. 944-962, 2008.
-
(2008)
Neurocomputing
, vol.71
, pp. 944-962
-
-
Yin, C.1
Tian, S.2
Mu, S.3
Shao, C.4
-
15
-
-
77957873516
-
Rule discovery from time series
-
G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, "Rule discovery from time series," in Proc. Int. Conf. Knowl. Discovery Data Mining, 1998, pp. 16-22.
-
(1998)
Proc. Int. Conf. Knowl. Discovery Data Mining
, pp. 16-22
-
-
Das, G.1
Lin, K.2
Mannila, H.3
Renganathan, G.4
Smyth, P.5
-
16
-
-
34548711424
-
Discovery of temporal dependencies between frequent patterns in multivariate time series
-
G. Tatavarty, R. Bhatnagar, and B. Young, "Discovery of temporal dependencies between frequent patterns in multivariate time series," in Proc. Comput. Intell. Data Mining, 2007, pp. 688-696.
-
(2007)
Proc. Comput. Intell. Data Mining
, pp. 688-696
-
-
Tatavarty, G.1
Bhatnagar, R.2
Young, B.3
-
17
-
-
34548093287
-
Experiencing SAX: A novel symbolic representation of time series
-
J. Lin, E. Keogh, L. Wei, and S. Lonardi, "Experiencing SAX: A novel symbolic representation of time series," Data Mining Knowl. Discovery, vol. 15, no. 2, pp. 107-144, 2007.
-
(2007)
Data Mining Knowl. Discovery
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
Keogh, E.2
Wei, L.3
Lonardi, S.4
-
18
-
-
84964528874
-
A survey of longest common subsequence algorithms
-
L. Bergroth, H. Hakonen, and T. Raita, "A survey of longest common subsequence algorithms," in Proc. 7th Int. Symp. String Process. Inf. Retrieval, 2000, pp. 39-48.
-
(2000)
Proc. 7th Int. Symp. String Process Inf. Retrieval
, pp. 39-48
-
-
Bergroth, L.1
Hakonen, H.2
Raita, T.3
-
19
-
-
52649123277
-
Efficiently mining closed subsequences with gap constraints
-
C. Li and J. Wang, "Efficiently mining closed subsequences with gap constraints," in Proc. 8th SIAM Int. Conf. Data Mining, 2008, pp. 313-322.
-
(2008)
Proc. 8th SIAM Int. Conf. Data Mining
, pp. 313-322
-
-
Li, C.1
Wang, J.2
-
20
-
-
84863433369
-
Lookup tables, suffix trees and suffix arrays
-
Boca Raton, FL, USA: CRC Press
-
S. Aluru and P. Ko, "Lookup tables, suffix trees and suffix arrays," in Handbook of Computational Molecular Biology. Boca Raton, FL, USA: CRC Press, 2006.
-
(2006)
Handbook of Computational Molecular Biology
-
-
Aluru, S.1
Ko, P.2
-
21
-
-
84863489474
-
Discovery of delta closed patterns and non-induced patterns from sequences
-
Apr
-
A. K. C. Wong, D. Zhuang, G. Li, and E. Lee, "Discovery of delta closed patterns and non-induced patterns from sequences," IEEE Trans. Knowl. Data Eng., vol. 24, no. 8, pp. 1408-1421, Apr. 2011.
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.8
, pp. 1408-1421
-
-
Wong, A.K.C.1
Zhuang, D.2
Li, G.3
Lee, E.4
-
22
-
-
0004172718
-
-
2nd ed. San Diego, CA, USA: Academic ed
-
S. Theodoridis and K. Koutroumbas, Pattern Recognition, 2nd ed. San Diego, CA, USA: Academic, 2003, ed, pp. 449-455.
-
(2003)
Pattern Recognition
, pp. 449-455
-
-
Theodoridis, S.1
Koutroumbas, K.2
-
24
-
-
8444253538
-
The UCR time series data mining archive
-
Univ. California, Riverside, CA, USA, [Online]. Available
-
E. Keogh, The UCR time series data mining archive, Comput. Sci. Eng. Depart., Univ. California, Riverside, CA, USA, [Online]. Available: http://www.cs.ucr.edu/~eamonn/tutorials.htm.
-
Comput. Sci. Eng. Depart.
-
-
Keogh, E.1
-
25
-
-
0032155089
-
Multivariable identification of a winding process by subspace methods for tension control
-
T. Bastogne, H. Noura, P. Sibille, and A. Richard, "Multivariable identification of a winding process by subspace methods for tension control," Control Eng. Practice, vol. 6, no. 9, pp. 1077-1088, 1998.
-
(1998)
Control Eng. Practice
, vol.6
, Issue.9
, pp. 1077-1088
-
-
Bastogne, T.1
Noura, H.2
Sibille, P.3
Richard, A.4
|