메뉴 건너뛰기




Volumn , Issue , 2014, Pages 12-17

On statistical modeling and forecasting of energy usage in smart grid

Author keywords

Energy usage forecasting; Machine learning; Real world meter reading data; Smart grid; Statistical modeling analysis

Indexed keywords

ELECTRIC POWER TRANSMISSION NETWORKS; ENERGY RESOURCES; FORECASTING; LEARNING SYSTEMS; STATISTICS; SUPPORT VECTOR MACHINES;

EID: 84910017088     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2663761.2663768     Document Type: Conference Paper
Times cited : (19)

References (14)
  • 2
    • 34249753618 scopus 로고
    • Support-vector networks
    • Sep.
    • C. Corinna and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, Sep. 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Corinna, C.1    Vapnik, V.2
  • 5
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci., 79:2554-2558, 1982.
    • (1982) Proc. Natl Acad. Sci. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 7
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • W. S. Noble. What is a support vector machine? Nature biotechnology, 24(12):1565-1567, 2006.
    • (2006) Nature Biotechnology , vol.24 , Issue.12 , pp. 1565-1567
    • Noble, W.S.1
  • 8
    • 84872081172 scopus 로고    scopus 로고
    • D. of Energy. Demand Response. http://energy.gov/oe/technology-development/smart-grid/demand-response.
    • Demand Response
  • 9
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • Oct.-Nov.
    • M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of relieff and rrelieff. Machine Learning, 53(1-2):23-69, Oct.-Nov. 2003.
    • (2003) Machine Learning , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 10
    • 0000898845 scopus 로고
    • An analysis of variance test for normality (complete samples)
    • S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples). Biometrika, 52(3-4):591-611, 1965.
    • (1965) Biometrika , vol.52 , Issue.3-4 , pp. 591-611
    • Shapiro, S.S.1    Wilk, M.B.2
  • 11
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • V. J. Jun.
    • J. A. Suykens and V. J. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293-300, Jun. 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.1
  • 13
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vector machines
    • J. A. Suykens, J. Vandewalle, and B. De Moor. Optimal control by least squares support vector machines. Neural Networks, 14(1):23-35, 2001.
    • (2001) Neural Networks , vol.14 , Issue.1 , pp. 23-35
    • Suykens, J.A.1    Vandewalle, J.2    De Moor, B.3
  • 14
    • 0014254846 scopus 로고
    • Probability plotting methods for the analysis of data
    • M. B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis of data. Biometrika, 55(1):1-17, 1968.
    • (1968) Biometrika , vol.55 , Issue.1 , pp. 1-17
    • Wilk, M.B.1    Gnanadesikan, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.