-
1
-
-
77956256281
-
Redox cycling in iron uptake, efflux, and trafficking
-
Kosman DJ (2010) Redox cycling in iron uptake, efflux, and trafficking. J Biol Chem 285: 26729-26735. doi: 10.1074/jbc.R110.113217.
-
(2010)
J Biol Chem
, vol.285
, pp. 26729-26735
-
-
Kosman, D.J.1
-
2
-
-
0029891827
-
A novel iron-regulated metal transporter from plants identified by functional expression in yeast
-
Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93: 5624-5628.
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, pp. 5624-5628
-
-
Eide, D.1
Broderius, M.2
Fett, J.3
Guerinot, M.L.4
-
3
-
-
0035983839
-
IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth
-
Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, et al. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14: 1223-1233.
-
(2002)
Plant Cell
, vol.14
, pp. 1223-1233
-
-
Vert, G.1
Grotz, N.2
Dedaldechamp, F.3
Gaymard, F.4
Guerinot, M.L.5
-
4
-
-
80052001379
-
Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants
-
Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, et al. (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci USA 108: E450-458. doi: 10.1073/pnas.1100659108.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. E450-E458
-
-
Barberon, M.1
Zelazny, E.2
Robert, S.3
Conéjéro, G.4
Curie, C.5
-
6
-
-
0031842182
-
Iron assimilation in Chlamydomonas reinhardtii involves ferric reduction and is similar to Strategy I higher plants
-
Eckhardt U, Buckhout TJ (1998) Iron assimilation in Chlamydomonas reinhardtii involves ferric reduction and is similar to Strategy I higher plants. Journal of Experimental Botany 49: 1219-1226.
-
(1998)
Journal of Experimental Botany
, vol.49
, pp. 1219-1226
-
-
Eckhardt, U.1
Buckhout, T.J.2
-
7
-
-
0037341361
-
Molecular mechanisms of iron uptake in fungi
-
Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47: 1185-1197.
-
(2003)
Mol Microbiol
, vol.47
, pp. 1185-1197
-
-
Kosman, D.J.1
-
8
-
-
84879719974
-
Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula
-
Rodriguez-Celma J, Lin W-D, Fu G-M, Abadia J, Lopez-Millan A-F, et al. (2013) Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol 162: 1473-1485. doi: 10.1104/pp.113.220426.
-
(2013)
Plant Physiol
, vol.162
, pp. 1473-1485
-
-
Rodriguez-Celma, J.1
Lin, W.-D.2
Fu, G.-M.3
Abadia, J.4
Lopez-Millan, A.-F.5
-
9
-
-
84888307631
-
Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency
-
Fourcroy P, Siso-Terraza P, Sudre D, Saviron M, Reyt G, et al. (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201: 155-167. doi: 10.1111/nph.12471.
-
(2014)
New Phytol
, vol.201
, pp. 155-167
-
-
Fourcroy, P.1
Siso-Terraza, P.2
Sudre, D.3
Saviron, M.4
Reyt, G.5
-
10
-
-
84891770385
-
Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in arabidopsis
-
Schmid NB, Giehl RFH, Doll S, Mock H-P, Strehmel N, et al. (2014) Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in arabidopsis. Plant Physiol 164: 160-172. doi: 10.1104/pp.113.228544.
-
(2014)
Plant Physiol
, vol.164
, pp. 160-172
-
-
Schmid, N.B.1
Giehl, R.F.H.2
Doll, S.3
Mock, H.-P.4
Strehmel, N.5
-
11
-
-
68749092956
-
Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots
-
Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183: 1072-1084. doi: 10.1111/j.1469-8137.2009.02908.x.
-
(2009)
New Phytol
, vol.183
, pp. 1072-1084
-
-
Santi, S.1
Schmidt, W.2
-
13
-
-
58849163578
-
Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis
-
Ravet K, Touraine B, Boucherez J, Briat J-F, Gaymard F, et al. (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57: 400-412. doi: 10.1111/j.1365-313X.2008.03698.x.
-
(2009)
Plant J
, vol.57
, pp. 400-412
-
-
Ravet, K.1
Touraine, B.2
Boucherez, J.3
Briat, J.-F.4
Gaymard, F.5
-
14
-
-
72049114946
-
The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis
-
Morrissey J, Baxter IR, Lee J, Li L, Lahner B, et al. (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21: 3326-3338. doi: 10.1105/tpc.109.069401.
-
(2009)
Plant Cell
, vol.21
, pp. 3326-3338
-
-
Morrissey, J.1
Baxter, I.R.2
Lee, J.3
Li, L.4
Lahner, B.5
-
15
-
-
33748756207
-
AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots
-
Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, et al. (2006) AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J Biol Chem 281: 25532-25540. doi: 10.1074/jbc.M601062200.
-
(2006)
J Biol Chem
, vol.281
, pp. 25532-25540
-
-
Schaaf, G.1
Honsbein, A.2
Meda, A.R.3
Kirchner, S.4
Wipf, D.5
-
16
-
-
33751573050
-
Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1
-
Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, et al. (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314: 1295-1298. doi: 10.1126/science.1132563.
-
(2006)
Science
, vol.314
, pp. 1295-1298
-
-
Kim, S.A.1
Punshon, T.2
Lanzirotti, A.3
Li, L.4
Alonso, J.M.5
-
17
-
-
28644435767
-
Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron
-
Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, et al. (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24: 4041-4051. doi: 10.1038/sj.emboj.7600864.
-
(2005)
EMBO J
, vol.24
, pp. 4041-4051
-
-
Lanquar, V.1
Lelievre, F.2
Bolte, S.3
Hames, C.4
Alcon, C.5
-
18
-
-
84868198839
-
Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice
-
Zhang Y, Xu Y-H, Yi H-Y, Gong J-M (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72: 400-410. doi: 10.1111/j.1365-313X.2012.05088.x.
-
(2012)
Plant J
, vol.72
, pp. 400-410
-
-
Zhang, Y.1
Xu, Y.-H.2
Yi, H.-Y.3
Gong, J.-M.4
-
19
-
-
67651209008
-
A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation
-
Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, et al. (2009) A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant J 59: 437-447. doi: 10.1111/j.1365-313X.2009.03879.x.
-
(2009)
Plant J
, vol.59
, pp. 437-447
-
-
Momonoi, K.1
Yoshida, K.2
Mano, S.3
Takahashi, H.4
Nakamori, C.5
-
20
-
-
65649150747
-
Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses
-
Buckhout TJ, Yang TJW, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics 10. doi: 10.1186/1471-2164-10-147.
-
(2009)
BMC Genomics
, vol.10
-
-
Buckhout, T.J.1
Yang, T.J.W.2
Schmidt, W.3
-
21
-
-
79955149246
-
Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana
-
Gollhofer J, Schlawicke C, Jungnick N, Schmidt W, Buckhout TJ (2011) Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana. Plant Physiol Biochem 49: 557-564. doi: 10.1016/j.plaphy.2011.02.011.
-
(2011)
Plant Physiol Biochem
, vol.49
, pp. 557-564
-
-
Gollhofer, J.1
Schlawicke, C.2
Jungnick, N.3
Schmidt, W.4
Buckhout, T.J.5
-
22
-
-
33845728923
-
An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness
-
Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, et al. (2006) An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 174: 1841-1857. doi: 10.1534/genetics.106.061044.
-
(2006)
Genetics
, vol.174
, pp. 1841-1857
-
-
Rampey, R.A.1
Woodward, A.W.2
Hobbs, B.N.3
Tierney, M.P.4
Lahner, B.5
-
23
-
-
0000167662
-
Bathophenanthrolinedisulphonic acid and bathocuproinedisulphonic acid, water soluble reagents for iron and copper
-
Blair D, Diehl H (1961) Bathophenanthrolinedisulphonic acid and bathocuproinedisulphonic acid, water soluble reagents for iron and copper. Talanta 7: 163-174.
-
(1961)
Talanta
, vol.7
, pp. 163-174
-
-
Blair, D.1
Diehl, H.2
-
25
-
-
0035800856
-
CCC1 is a transporter that mediates vacuolar iron storage in yeast
-
Li L, Chen OS, McVey Ward D, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276: 29515-29519. doi: 10.1074/jbc.M103944200.
-
(2001)
J Biol Chem
, vol.276
, pp. 29515-29519
-
-
Li, L.1
Chen, O.S.2
McVey Ward, D.3
Kaplan, J.4
-
26
-
-
0032447801
-
Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
-
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743.
-
(1998)
Plant J
, vol.16
, pp. 735-743
-
-
Clough, S.J.1
Bent, A.F.2
-
27
-
-
34548487513
-
A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants
-
Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51: 1126-1136. doi: 10.1111/j.1365-313X.2007.03212.x.
-
(2007)
Plant J
, vol.51
, pp. 1126-1136
-
-
Nelson, B.K.1
Cai, X.2
Nebenfuhr, A.3
-
28
-
-
77950532588
-
Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks
-
Yang TJW, Lin W-D, Schmidt W (2010) Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant Physiol 152: 2130-2141. doi: 10.1104/pp.109.152728.
-
(2010)
Plant Physiol
, vol.152
, pp. 2130-2141
-
-
Yang, T.J.W.1
Lin, W.-D.2
Schmidt, W.3
-
29
-
-
0001732069
-
The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants
-
Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116: 1063-1072.
-
(1998)
Plant Physiol
, vol.116
, pp. 1063-1072
-
-
Cohen, C.K.1
Fox, T.C.2
Garvin, D.F.3
Kochian, L.V.4
-
30
-
-
77950538398
-
Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency
-
Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, et al. (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152: 1986-1999. doi: 10.1104/pp.109.150946.
-
(2010)
Plant Physiol
, vol.152
, pp. 1986-1999
-
-
Lanquar, V.1
Ramos, M.S.2
Lelievre, F.3
Barbier-Brygoo, H.4
Krieger-Liszkay, A.5
-
31
-
-
84864309066
-
The zinc homeostasis network of land plants
-
Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823: 1553-1567. doi: 10.1016/j.bbamcr.2012.05.016.
-
(2012)
Biochim Biophys Acta
, vol.1823
, pp. 1553-1567
-
-
Sinclair, S.A.1
Kramer, U.2
-
32
-
-
79955144736
-
A hitchhiker's guide to the Arabidopsis ferrome
-
Schmidt W, Buckhout TJ (2011) A hitchhiker's guide to the Arabidopsis ferrome. Plant Physiol Biochem 49: 462-470. doi: 10.1016/j.plaphy.2010.12.001.
-
(2011)
Plant Physiol Biochem
, vol.49
, pp. 462-470
-
-
Schmidt, W.1
Buckhout, T.J.2
-
33
-
-
18444408674
-
The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response
-
Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16: 3400-3412. doi: 10.1105/tpc.104.024315.
-
(2004)
Plant Cell
, vol.16
, pp. 3400-3412
-
-
Colangelo, E.P.1
Guerinot, M.L.2
-
34
-
-
8844234980
-
FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana
-
Jakoby M, Wang H-Y, Reidt W, Weisshaar B, Bauer P (2004) FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett 577: 528-534. doi: 10.1016/j.febslet.2004.10.062.
-
(2004)
FEBS Lett
, vol.577
, pp. 528-534
-
-
Jakoby, M.1
Wang, H.-Y.2
Reidt, W.3
Weisshaar, B.4
Bauer, P.5
-
35
-
-
40249095934
-
FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis
-
Yuan Y, Wu H, Wang N, Li J, Zhao W, et al. (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18: 385-397. doi: 10.1038/cr.2008.26.
-
(2008)
Cell Res
, vol.18
, pp. 385-397
-
-
Yuan, Y.1
Wu, H.2
Wang, N.3
Li, J.4
Zhao, W.5
-
36
-
-
77956819375
-
The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots
-
Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, et al. (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22: 2219-2236. doi: 10.1105/tpc.110.074096.
-
(2010)
Plant Cell
, vol.22
, pp. 2219-2236
-
-
Long, T.A.1
Tsukagoshi, H.2
Busch, W.3
Lahner, B.4
Salt, D.E.5
-
37
-
-
84888245849
-
Iron-binding Haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation
-
Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, et al. (2013) Iron-binding Haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4. doi: 10.1038/ncomms3792.
-
(2013)
Nat Commun
, vol.4
-
-
Kobayashi, T.1
Nagasaka, S.2
Senoura, T.3
Itai, R.N.4
Nakanishi, H.5
-
38
-
-
84899822695
-
Iron sensors and signals in response to iron deficiency
-
Kobayashi T, Nishizawa NK (2014) Iron sensors and signals in response to iron deficiency. Plant Sci 224C. doi: 10.1016/j.plantsci.2014.04.002.
-
(2014)
Plant Sci
, vol.224 C
-
-
Kobayashi, T.1
Nishizawa, N.K.2
|