-
1
-
-
84908884417
-
-
Twitter help center: how to use Twitter lists
-
Twitter help center: how to use Twitter lists. http://bit.ly/how-To-use-Twitter-lists.
-
-
-
-
2
-
-
84979555372
-
Short and tweet: Experiments on recommending content from information streams
-
J. Chen, R. Nairn, L. Nelson, M. Bernstein, and E. H. Chi. Short and tweet: experiments on recommending content from information streams. In ACM SIGCHI, 2010.
-
(2010)
ACM SIGCHI
-
-
Chen, J.1
Nairn, R.2
Nelson, L.3
Bernstein, M.4
Chi, E.H.5
-
3
-
-
84871061502
-
What is happening right now ⋯ that interests me?: Online topic discovery and recommendation in twitter
-
E. Diaz-Aviles et al. What is Happening Right Now ⋯ That Interests Me?: Online Topic Discovery and Recommendation in Twitter. In ACM CIKM, 2012.
-
(2012)
ACM CIKM
-
-
Diaz-Aviles, E.1
-
4
-
-
84866605732
-
Cognos: Crowdsourcing search for topic experts in microblogs
-
S. Ghosh, N. Sharma, F. Benevenuto, N. Ganguly, and K. Gummadi. Cognos: crowdsourcing search for topic experts in microblogs. In ACM SIGIR, 2012.
-
(2012)
ACM SIGIR
-
-
Ghosh, S.1
Sharma, N.2
Benevenuto, F.3
Ganguly, N.4
Gummadi, K.5
-
5
-
-
84908892234
-
Co-factorization machines: Modeling user interests and predicting individual decisions in twitter
-
L. Hong, A. S. Doumith, and B. D. Davison. Co-factorization Machines: Modeling User Interests and Predicting Individual Decisions in Twitter. In ACM WSDM, 2013.
-
(2013)
ACM WSDM
-
-
Hong, L.1
Doumith, A.S.2
Davison, B.D.3
-
6
-
-
84863177076
-
Twitobi: A recommendation system for twitter using probabilistic modeling
-
Y. Kim and K. Shim. TWITOBI: A Recommendation System for Twitter Using Probabilistic Modeling. In IEEE ICDM, 2011.
-
(2011)
IEEE ICDM
-
-
Kim, Y.1
Shim, K.2
-
8
-
-
84908866146
-
Of pins and tweets: Investigating how users behave across image-And text-based social networks
-
R. Ottoni et al. Of Pins and Tweets: Investigating how users behave across image-And text-based social networks. In AAAI ICWSM, 2014.
-
(2014)
AAAI ICWSM
-
-
Ottoni, R.1
-
9
-
-
80053392186
-
Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora
-
D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled LDA: A Supervised Topic Model for Credit Attribution in Multi-labeled Corpora. In EMNLP, 2009.
-
(2009)
EMNLP
-
-
Ramage, D.1
Hall, D.2
Nallapati, R.3
Manning, C.D.4
-
10
-
-
84866619648
-
Inferring who-is-who in the twitter social network
-
N. Sharma, S. Ghosh, F. Benevenuto, N. Ganguly, and K. Gummadi. Inferring Who-is-Who in the Twitter Social Network. In Workshop on Online Social Networks, 2012.
-
(2012)
Workshop on Online Social Networks
-
-
Sharma, N.1
Ghosh, S.2
Benevenuto, F.3
Ganguly, N.4
Gummadi, K.5
-
11
-
-
84873680993
-
It's not in their tweets: Modeling topical expertise of twitter users
-
C. Wagner, V. Liao, P. Pirolli, L. Nelson, and M. Strohmaier. It's not in their tweets: modeling topical expertise of Twitter users. In IEEE SocialCom, 2012.
-
(2012)
IEEE SocialCom
-
-
Wagner, C.1
Liao, V.2
Pirolli, P.3
Nelson, L.4
Strohmaier, M.5
|