메뉴 건너뛰기




Volumn 37, Issue 3, 2014, Pages 464-491

On the identifiability of overcomplete dictionaries via the minimisation principle underlying K-SVD

Author keywords

Dictionary identification; Dictionary learning; Finite sample size; K SVD; Minimisation criterion; Sampling complexity; Sparse coding; Sparse component analysis; Sparse representation

Indexed keywords

ASYMPTOTIC ANALYSIS; SAMPLING;

EID: 84908556147     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2014.01.005     Document Type: Article
Times cited : (61)

References (43)
  • 3
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • November
    • M. Aharon, M. Elad, A.M. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process. 54 (11) (November 2006) 4311-4322.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.M.3
  • 4
    • 33646712150 scopus 로고    scopus 로고
    • On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them
    • July
    • M. Aharon, M. Elad, A.M. Bruckstein, On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them, Linear Algebra Appl. 416 (July 2006) 48-67.
    • (2006) Linear Algebra Appl. , vol.416 , pp. 48-67
    • Aharon, M.1    Elad, M.2    Bruckstein, A.M.3
  • 6
    • 57349145416 scopus 로고    scopus 로고
    • Iterative thresholding for sparse approximations
    • T. Blumensath, M.E. Davies, Iterative thresholding for sparse approximations, J. Fourier Anal. Appl. 14 (5-6) (2008) 629-654.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5-6 , pp. 629-654
    • Blumensath, T.1    Davies, M.E.2
  • 8
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory 52 (2) (2006) 489-509.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.2 , pp. 489-509
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 12
    • 77949704355 scopus 로고    scopus 로고
    • Iteratively reweighted least squares minimization for sparse recovery
    • January
    • I. Daubechies, R.A. DeVore, M. Fornasier, S. Güntürk, Iteratively reweighted least squares minimization for sparse recovery, Comm. Pure Appl. Math. 63 (1) (January 2010) 1-38.
    • (2010) Comm. Pure Appl. Math. , vol.63 , Issue.1 , pp. 1-38
    • Daubechies, I.1    DeVore, R.A.2    Fornasier, M.3    Güntürk, S.4
  • 13
    • 0031541839 scopus 로고    scopus 로고
    • Adaptive greedy approximations
    • Springer-Verlag New York Inc.
    • G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations, in: Constr. Approx., vol. 13, Springer-Verlag New York Inc., 1997, pp. 57-98.
    • (1997) Constr. Approx. , vol.13 , pp. 57-98
    • Davis, G.1    Mallat, S.2    Avellaneda, M.3
  • 14
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D.L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (4) (2006) 1289-1306.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 15
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • January
    • D.L. Donoho, M. Elad, V.N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inform. Theory 52 (1) (January 2006) 6-18.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 16
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • D.J. Field, B.A. Olshausen, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature 381 (1996) 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Field, D.J.1    Olshausen, B.A.2
  • 18
    • 23044451368 scopus 로고    scopus 로고
    • Sparse component analysis and blind source separation of underdetermined mixtures
    • P. Georgiev, F.J. Theis, A. Cichocki, Sparse component analysis and blind source separation of underdetermined mixtures, IEEE Trans. Neural Netw. 16 (4) (2005) 992-996.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.4 , pp. 992-996
    • Georgiev, P.1    Theis, F.J.2    Cichocki, A.3
  • 20
    • 57349143370 scopus 로고    scopus 로고
    • Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms
    • R. Gribonval, H. Rauhut, K. Schnass, P. Vandergheynst, Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms, J. Fourier Anal. Appl. 14 (5) (2008) 655-687.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5 , pp. 655-687
    • Gribonval, R.1    Rauhut, H.2    Schnass, K.3    Vandergheynst, P.4
  • 24
    • 0034431368 scopus 로고    scopus 로고
    • FOCUSS-based dictionary learning algorithms
    • K. Kreutz-Delgado, B.D. Rao, FOCUSS-based dictionary learning algorithms, in: Proc. SPIE, vol. 4119, 2000.
    • (2000) Proc. SPIE , vol.4119
    • Kreutz-Delgado, K.1    Rao, B.D.2
  • 26
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online learning for matrix factorization and sparse coding, J. Mach. Learn. Res. 11 (2010) 19-60.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 27
    • 77958550281 scopus 로고    scopus 로고
    • K-dimensional coding schemes in Hilbert spaces
    • A. Maurer, M. Pontil, K-dimensional coding schemes in Hilbert spaces, IEEE Trans. Inform. Theory 56 (11) (2010) 5839-5846.
    • (2010) IEEE Trans. Inform. Theory , vol.56 , Issue.11 , pp. 5839-5846
    • Maurer, A.1    Pontil, M.2
  • 29
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • D. Needell, J.A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal. 26 (3) (2009) 301-321.
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 32
    • 77952714665 scopus 로고    scopus 로고
    • Dictionaries for sparse representation modeling
    • R. Rubinstein, A. Bruckstein, M. Elad, Dictionaries for sparse representation modeling, Proc. IEEE 98 (6) (2010) 1045-1057.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1045-1057
    • Rubinstein, R.1    Bruckstein, A.2    Elad, M.3
  • 33
    • 84908515516 scopus 로고    scopus 로고
    • Dictionary identification results for K-SVD with sparsity parameter 1
    • K. Schnass, Dictionary identification results for K-SVD with sparsity parameter 1, in: SampTA13, 2013.
    • (2013) SampTA13
    • Schnass, K.1
  • 35
    • 36249017221 scopus 로고    scopus 로고
    • Average performance analysis for thresholding
    • K. Schnass, P. Vandergheynst, Average performance analysis for thresholding, IEEE Signal Process. Lett. 14 (11) (2007) 828-831.
    • (2007) IEEE Signal Process. Lett. , vol.14 , Issue.11 , pp. 828-831
    • Schnass, K.1    Vandergheynst, P.2
  • 36
    • 77949403269 scopus 로고    scopus 로고
    • Recursive least squares dictionary learning algorithm
    • April
    • K. Skretting, K. Engan, Recursive least squares dictionary learning algorithm, IEEE Trans. Signal Process. 58 (4) (April 2010) 2121-2130.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.4 , pp. 2121-2130
    • Skretting, K.1    Engan, K.2
  • 38
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • October
    • J.A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform. Theory 50 (10) (October 2004) 2231-2242.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 39
    • 44249104733 scopus 로고    scopus 로고
    • On the conditioning of random subdictionaries
    • J.A. Tropp, On the conditioning of random subdictionaries, Appl. Comput. Harmon. Anal. 25 (2008) 1-24.
    • (2008) Appl. Comput. Harmon. Anal. , vol.25 , pp. 1-24
    • Tropp, J.A.1
  • 41
    • 84857918539 scopus 로고    scopus 로고
    • Introduction to the non-asymptotic analysis of random matrices
    • Y. Eldar, G. Kutyniok (Eds.), Cambridge University Press, Chapter 5
    • R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, in: Y. Eldar, G. Kutyniok (Eds.), Compressed Sensing, Theory and Applications, Cambridge University Press, 2012, Chapter 5.
    • (2012) Compressed Sensing, Theory and Applications
    • Vershynin, R.1
  • 42
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • June
    • M. Yaghoobi, T. Blumensath, M.E. Davies, Dictionary learning for sparse approximations with the majorization method, IEEE Trans. Signal Process. 57 (6) (June 2009) 2178-2191.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.6 , pp. 2178-2191
    • Yaghoobi, M.1    Blumensath, T.2    Davies, M.E.3
  • 43
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • M. Zibulevsky, B.A. Pearlmutter, Blind source separation by sparse decomposition in a signal dictionary, Neural Comput. 13 (4) (2001) 863-882.
    • (2001) Neural Comput. , vol.13 , Issue.4 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.