메뉴 건너뛰기




Volumn 23, Issue 12, 2014, Pages 5057-5069

Sparsity-based poisson denoising with dictionary learning

Author keywords

Denoising; dictionary learning; photon limited imaging; Poisson noise; signal modeling; sparse representations

Indexed keywords

DE-NOISING; DICTIONARY LEARNING; PHOTON-LIMITED IMAGING; POISSON NOISE; SIGNAL MODELING; SPARSE REPRESENTATION;

EID: 84908544511     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2014.2362057     Document Type: Article
Times cited : (100)

References (29)
  • 3
    • 80055059192 scopus 로고    scopus 로고
    • Deblurring of Poissonian images using BM3D frames
    • Sep.
    • A. Danielyan, V. Katkovnik, and K. Egiazarian, "Deblurring ofPoissonian images using BM3D frames," Proc. SPIE, vol. 8138,p. 813812, Sep. 2011.
    • (2011) Proc. SPIE , vol.8138 , pp. 813812
    • Danielyan, A.1    Katkovnik, V.2    Egiazarian, K.3
  • 5
    • 78649287919 scopus 로고    scopus 로고
    • Restoration of Poissonianimages using alternating direction optimization
    • Dec.
    • M. A. T. Figueiredo and J. M. Bioucas-Dias, "Restoration of Poissonianimages using alternating direction optimization," IEEE Trans. ImageProcess., vol. 19, no. 12, pp. 3133-3145, Dec. 2010.
    • (2010) IEEE Trans. ImageProcess. , vol.19 , Issue.12 , pp. 3133-3145
    • Figueiredo, M.A.T.1    Bioucas-Dias, J.M.2
  • 6
    • 80052604402 scopus 로고    scopus 로고
    • A novel sparsity reconstruction methodfrom Poisson data for 3D bioluminescence tomography
    • Mar.
    • X. Zhang, Y. Lu, and T. Chan, "A novel sparsity reconstruction methodfrom Poisson data for 3D bioluminescence tomography," J. Sci. Comput.,vol. 50, no. 3, pp. 519-535, Mar. 2012.
    • (2012) J. Sci. Comput. , vol.50 , Issue.3 , pp. 519-535
    • Zhang, X.1    Lu, Y.2    Chan, T.3
  • 7
    • 76249091081 scopus 로고    scopus 로고
    • Patch-based nonlocal functional for denoising fluorescencemicroscopy image sequences
    • Feb.
    • J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, andJ. Salamero, "Patch-based nonlocal functional for denoising fluorescencemicroscopy image sequences," IEEE Trans. Med. Imag., vol. 29, no. 2,pp. 442-454, Feb. 2010.
    • (2010) IEEE Trans. Med. Imag. , vol.29 , Issue.2 , pp. 442-454
    • Boulanger, J.1    Kervrann, C.2    Bouthemy, P.3    Elbau, P.4    Sibarita, J.-B.5    Salamero, J.6
  • 8
    • 79551510865 scopus 로고    scopus 로고
    • Optimal inversion of the Anscombe transformationin low-count Poisson image denoising
    • Jan.
    • M. Makitalo and A. Foi, "Optimal inversion of the Anscombe transformationin low-count Poisson image denoising," IEEE Trans. ImageProcess., vol. 20, no. 1, pp. 99-109, Jan. 2011.
    • (2011) IEEE Trans. ImageProcess. , vol.20 , Issue.1 , pp. 99-109
    • Makitalo, M.1    Foi, A.2
  • 9
    • 45949089551 scopus 로고    scopus 로고
    • Wavelets, ridgelets, andcurvelets for Poisson noise removal
    • Jul.
    • B. Zhang, J. M. Fadili, and J.-L. Starck, "Wavelets, ridgelets, andcurvelets for Poisson noise removal," IEEE Trans. Image Process.,vol. 17, no. 7, pp. 1093-1108, Jul. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.7 , pp. 1093-1108
    • Zhang, B.1    Fadili, J.M.2    Starck, J.-L.3
  • 10
    • 0001243836 scopus 로고
    • The transformation of Poisson, binomial and negativebinomialdata
    • F. J. Anscombe, "The transformation of Poisson, binomial and negativebinomialdata," Biometrika, vol. 35, nos. 3-4, pp. 246-254, 1948.
    • (1948) Biometrika , vol.35 , Issue.4 , pp. 246-254
    • Anscombe, F.J.1
  • 11
    • 3142759528 scopus 로고
    • The limiting distribution of a function of two independentrandom variables and its statistical application
    • M. Fisz, "The limiting distribution of a function of two independentrandom variables and its statistical application," Colloq. Math., vol. 3,no. 2, pp. 138-146, 1955.
    • (1955) Colloq. Math. , vol.3 , Issue.2 , pp. 138-146
    • Fisz, M.1
  • 12
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising bysparse 3D transform-domain collaborative filtering
    • Aug.
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising bysparse 3D transform-domain collaborative filtering," IEEE Trans. ImageProcess., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.
    • (2007) IEEE Trans. ImageProcess. , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 14
    • 84860189704 scopus 로고    scopus 로고
    • Solving inverse problems withpiecewise linear estimators: From Gaussian mixture models to structuredsparsity
    • May
    • G. Yu, G. Sapiro, and S. Mallat, "Solving inverse problems withpiecewise linear estimators: From Gaussian mixture models to structuredsparsity," IEEE Trans. Image Process., vol. 21, no. 5, pp. 2481-2499,May 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.5 , pp. 2481-2499
    • Yu, G.1    Sapiro, G.2    Mallat, S.3
  • 15
    • 84857311234 scopus 로고    scopus 로고
    • This is SPIRALTAP:Sparse Poisson intensity reconstruction algorithms-Theory andpractice
    • Mar.
    • Z. T. Harmany, R. F. Marcia, and R. M. Willett, "This is SPIRALTAP:Sparse Poisson intensity reconstruction algorithms-Theory andpractice," IEEE Trans. Image Process., vol. 21, no. 3, pp. 1084-1096,Mar. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.3 , pp. 1084-1096
    • Harmany, Z.T.1    Marcia, R.F.2    Willett, R.M.3
  • 20
    • 84870874964 scopus 로고    scopus 로고
    • Improving dictionary learning: Multipledictionary updates and coefficient reuse
    • Jan.
    • L. N. Smith and M. Elad, "Improving dictionary learning: Multipledictionary updates and coefficient reuse," IEEE Signal Process. Lett.,vol. 20, no. 1, pp. 79-82, Jan. 2013.
    • (2013) IEEE Signal Process. Lett. , vol.20 , Issue.1 , pp. 79-82
    • Smith, L.N.1    Elad, M.2
  • 22
    • 65649125658 scopus 로고    scopus 로고
    • Sparsity regularizationfor image reconstruction with Poisson data
    • Feb.
    • D. J. Lingenfelter, J. A. Fessler, and Z. He, "Sparsity regularizationfor image reconstruction with Poisson data," Proc. SPIE, vol. 7246,pp. 72460F-1-72460F-10, Feb. 2009.
    • (2009) Proc. SPIE , vol.7246 , pp. 72460F1-72460F10
    • Lingenfelter, D.J.1    Fessler, J.A.2    He, Z.3
  • 23
    • 80053020642 scopus 로고    scopus 로고
    • Improving denoising algorithms via amulti-scale meta-procedure
    • R. Mester and M. Felsberg, Eds. Berlin,Germany: Springer-Verlag
    • H. C. Burger and S. Harmeling, "Improving denoising algorithms via amulti-scale meta-procedure," in Pattern Recognition (Lecture Notes inComputer Science), vol. 6835, R. Mester and M. Felsberg, Eds. Berlin,Germany: Springer-Verlag, 2011, pp. 206-215.
    • (2011) Pattern Recognition (Lecture Notes InComputer Science) , vol.6835 , pp. 206-215
    • Burger, H.C.1    Harmeling, S.2
  • 24
    • 78651094424 scopus 로고    scopus 로고
    • Poisson NL means: Unsupervisednon local means for Poisson noise
    • Sep.
    • C.-A. Deledalle, F. Tupin, and L. Denis, "Poisson NL means: Unsupervisednon local means for Poisson noise," in Proc. 17th IEEE ICIP,Sep. 2010, pp. 801-804.
    • (2010) Proc. 17th IEEE ICIP , pp. 801-804
    • Deledalle, C.-A.1    Tupin, F.2    Denis, L.3
  • 25
    • 33645653318 scopus 로고    scopus 로고
    • A review of image denoisingalgorithms, with a new one
    • A. Buades, B. Coll, and J. M. Morel, "A review of image denoisingalgorithms, with a new one," Multiscale Model. Simul., vol. 4, no. 2,pp. 490-530, 2005.
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.2 , pp. 490-530
    • Buades, A.1    Coll, B.2    Morel, J.M.3
  • 26
    • 58149144703 scopus 로고    scopus 로고
    • Generalizing thenonlocal-means to super-resolution reconstruction
    • Jan.
    • M. Protter, M. Elad, H. Takeda, and P. Milanfar, "Generalizing thenonlocal-means to super-resolution reconstruction," IEEE Trans. ImageProcess., vol. 18, no. 1, pp. 36-51, Jan. 2009.
    • (2009) IEEE Trans. ImageProcess. , vol.18 , Issue.1 , pp. 36-51
    • Protter, M.1    Elad, M.2    Takeda, H.3    Milanfar, P.4
  • 28
    • 37849188832 scopus 로고    scopus 로고
    • Family of iterative LS-baseddictionary learning algorithms, ILS-DLA, for sparse signal representation
    • K. Engan, K. Skretting, and J. H. Husøy, "Family of iterative LS-baseddictionary learning algorithms, ILS-DLA, for sparse signal representation,"Digit. Signal Process., vol. 17, no. 1, pp. 32-49, 2007.
    • (2007) Digit. Signal Process. , vol.17 , Issue.1 , pp. 32-49
    • Engan, K.1    Skretting, K.2    Husøy, J.H.3
  • 29
    • 79953103015 scopus 로고    scopus 로고
    • The projected GSURE for automaticparameter tuning in iterative shrinkage methods
    • R. Giryes, M. Elad, and Y. C. Eldar, "The projected GSURE for automaticparameter tuning in iterative shrinkage methods," Appl. Comput.Harmonic Anal., vol. 30, no. 3, pp. 407-422, 2011.
    • (2011) Appl. Comput.Harmonic Anal. , vol.30 , Issue.3 , pp. 407-422
    • Giryes, R.1    Elad, M.2    Eldar, Y.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.