-
1
-
-
44449091492
-
2 single crystals with a large percentage of reactive facets
-
2 single crystals with a large percentage of reactive facets Nature 453 2008 638 641
-
(2008)
Nature
, vol.453
, pp. 638-641
-
-
Yang, H.G.1
Sun, C.H.2
Qiao, S.Z.3
Zou, J.4
Liu, G.5
Smith, S.C.6
Cheng, H.M.7
Lu, G.Q.8
-
2
-
-
79959780716
-
Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties
-
G. Liu, J.C. Yu, G.Q. Lu, and H.-M. Cheng Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties Chem. Commun. 47 2011 6763 6783
-
(2011)
Chem. Commun.
, vol.47
, pp. 6763-6783
-
-
Liu, G.1
Yu, J.C.2
Lu, G.Q.3
Cheng, H.-M.4
-
3
-
-
84874618738
-
4
-
4 Nat. Commun. 4 2013 1432
-
(2013)
Nat. Commun.
, vol.4
, pp. 1432
-
-
Li, R.1
Zhang, F.2
Wang, D.3
Yang, J.4
Li, M.5
Zhu, J.6
Zhou, X.7
Han, H.8
Li, C.9
-
6
-
-
67749142099
-
2 nanosheets with dominant {0 0 1} facets
-
2 nanosheets with dominant {0 0 1} facets J. Am. Chem. Soc. 131 2009 4078 4083
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 4078-4083
-
-
Yang, H.G.1
Liu, G.2
Qiao, S.Z.3
Sun, C.H.4
Jin, Y.G.5
Smith, S.C.6
Zou, J.7
Cheng, H.M.8
Lu, G.Q.9
-
8
-
-
0037233037
-
The surface science of titanium dioxide
-
D. Ulrike The surface science of titanium dioxide Sur. Sci. Rep. 48 2003 53 229
-
(2003)
Sur. Sci. Rep.
, vol.48
, pp. 53-229
-
-
Ulrike, D.1
-
12
-
-
84864970659
-
2 sheets with dominant {0 0 1} facets for enhancing visible-light photocatalytic activity
-
2 sheets with dominant {0 0 1} facets for enhancing visible-light photocatalytic activity J. Mater. Chem. 22 2012 17700 17708
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 17700-17708
-
-
Zhang, J.1
Xi, J.2
Ji, Z.3
-
13
-
-
84863115305
-
2 (0 0 1) predicted by first principle studies
-
2 (0 0 1) predicted by first principle studies J. Phys. Chem. C 116 2012 3524 3531
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 3524-3531
-
-
Sun, C.1
Smith, S.C.2
-
14
-
-
84860004416
-
4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity
-
4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity J. Am. Chem. Soc. 134 2012 6751 6761
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 6751-6761
-
-
Gordon, T.R.1
Cargnello, M.2
Paik, T.3
Mangolini, F.4
Weber, R.T.5
Fornasiero, P.6
Murray, C.B.7
-
15
-
-
79952142755
-
2 nanosheets with exposed {0 0 1} facets: Synthesis, characterization and visible-light photocatalytic activity
-
2 nanosheets with exposed {0 0 1} facets: synthesis, characterization and visible-light photocatalytic activity Phys. Chem. Chem. Phys. 13 2011 4853 4861
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 4853-4861
-
-
Xiang, Q.1
Yu, J.2
Jaroniec, M.3
-
16
-
-
80052595718
-
2 microspheres with nearly all-(0 0 1) surface for enhanced solar absorption
-
2 microspheres with nearly all-(0 0 1) surface for enhanced solar absorption Nanoscale 3 2011 3915 3922
-
(2011)
Nanoscale
, vol.3
, pp. 3915-3922
-
-
Wu, J.-M.1
Tang, M.-L.2
-
18
-
-
81855190861
-
2 hollow spheres: Room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells
-
2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells J. Am. Chem. Soc. 133 2011 19102 19109
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 19102-19109
-
-
Wang, H.1
Miyauchi, M.2
Ishikawa, Y.3
Pyatenko, A.4
Koshizaki, N.5
Li, Y.6
Li, L.7
Li, X.8
Bando, Y.9
Golberg, D.10
-
20
-
-
77953675405
-
Water-soluble fluorescent carbon quantum dots and photocatalyst design
-
H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, and S.-T. Lee Water-soluble fluorescent carbon quantum dots and photocatalyst design Angew. Chem. Int. Ed. 49 2010 4430 4434
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 4430-4434
-
-
Li, H.1
He, X.2
Kang, Z.3
Huang, H.4
Liu, Y.5
Liu, J.6
Lian, S.7
Tsang, C.H.A.8
Yang, X.9
Lee, S.-T.10
-
21
-
-
84865010827
-
2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior
-
2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior J. Mater. Chem. 22 2012 17470 17475
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 17470-17475
-
-
Li, H.1
Liu, R.2
Liu, Y.3
Huang, H.4
Yu, H.5
Ming, H.6
Lian, S.7
Lee, S.-T.8
Kang, Z.9
-
23
-
-
84891793491
-
Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation
-
R. Liu, H. Huang, H. Li, Y. Liu, J. Zhong, Y. Li, S. Zhang, and Z. Kang Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation ACS Catal. 4 2014 328 336
-
(2014)
ACS Catal.
, vol.4
, pp. 328-336
-
-
Liu, R.1
Huang, H.2
Li, H.3
Liu, Y.4
Zhong, J.5
Li, Y.6
Zhang, S.7
Kang, Z.8
-
24
-
-
84879931768
-
4 with different exposed facets
-
4 with different exposed facets Dalton Trans. 42 2013 6285 6289
-
(2013)
Dalton Trans.
, vol.42
, pp. 6285-6289
-
-
Tang, D.1
Zhang, H.2
Huang, H.3
Liu, R.4
Han, Y.5
Liu, Y.6
Tong, C.7
Kang, Z.8
-
26
-
-
84875707702
-
Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging
-
S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, and B. Yang Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging Angew. Chem. Int. Ed. 52 2013 3953 3957
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 3953-3957
-
-
Zhu, S.1
Meng, Q.2
Wang, L.3
Zhang, J.4
Song, Y.5
Jin, H.6
Zhang, K.7
Sun, H.8
Wang, H.9
Yang, B.10
-
27
-
-
79959880297
-
Luminscent graphene quantum dots for organic photovoltaic devices
-
V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, and S. Chand Luminscent graphene quantum dots for organic photovoltaic devices J. Am. Chem. Soc. 133 2011 9960 9963
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 9960-9963
-
-
Gupta, V.1
Chaudhary, N.2
Srivastava, R.3
Sharma, G.D.4
Bhardwaj, R.5
Chand, S.6
-
30
-
-
84874902792
-
2: Mechanistic role of gaseous HF and visible-light photocatalytic activity
-
2: mechanistic role of gaseous HF and visible-light photocatalytic activity CrystEngComm 15 2013 2537 2543
-
(2013)
CrystEngComm
, vol.15
, pp. 2537-2543
-
-
Wang, W.1
Lu, C.2
Ni, Y.3
Xu, Z.4
-
32
-
-
79951513799
-
Increasing solar absorption for photocatalysis with back hydrogenated titanium dioxide nanocrystals
-
X. Chen, L. Liu, P.Y. Yu, and S.S. Mao Increasing solar absorption for photocatalysis with back hydrogenated titanium dioxide nanocrystals Science 331 2011 746 750
-
(2011)
Science
, vol.331
, pp. 746-750
-
-
Chen, X.1
Liu, L.2
Yu, P.Y.3
Mao, S.S.4
-
33
-
-
84865722069
-
2 nanosheets with exposed {0 0 1} facets for enhanced photocatalytic activity
-
2 nanosheets with exposed {0 0 1} facets for enhanced photocatalytic activity RSC Adv. 2 2012 8286 8288
-
(2012)
RSC Adv.
, vol.2
, pp. 8286-8288
-
-
Wei, W.1
Yaru, N.2
Chunhua, L.3
Zhongzi, X.4
-
34
-
-
84862908091
-
A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite
-
S. Wang, L. Yi, J.E. Halpert, X. Lai, Y. Liu, H. Cao, R. Yu, D. Wang, and Y. Li A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite Small 8 2012 265 271
-
(2012)
Small
, vol.8
, pp. 265-271
-
-
Wang, S.1
Yi, L.2
Halpert, J.E.3
Lai, X.4
Liu, Y.5
Cao, H.6
Yu, R.7
Wang, D.8
Li, Y.9
-
35
-
-
80053325435
-
2 nanocomposite for photocatalytic selective transformation: What advantage does graphene have over its forebear carbon nanotube?
-
2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5 2011 7426 7435
-
(2011)
ACS Nano
, vol.5
, pp. 7426-7435
-
-
Zhang, Y.1
Tang, Z.-R.2
Fu, X.3
Xu, Y.-J.4
-
37
-
-
84873143576
-
Carbon nanodots: Synthesis, properties and applications
-
H. Li, Z. Kang, Y. Liu, and S.-T. Lee Carbon nanodots: synthesis, properties and applications J. Mater. Chem. 22 2012 24230 24253
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 24230-24253
-
-
Li, H.1
Kang, Z.2
Liu, Y.3
Lee, S.-T.4
|