-
1
-
-
84867030978
-
Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
-
N.S. Choi, Z.H. Chen, S.A. Freunberger, X.L. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors, Angew. Chem. Int. Ed. 51 (2012) 9994-10024.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 9994-10024
-
-
Choi, N.S.1
Chen, Z.H.2
Freunberger, S.A.3
Ji, X.L.4
Sun, Y.K.5
Amine, K.6
Yushin, G.7
Nazar, L.F.8
Cho, J.9
Bruce, P.G.10
-
2
-
-
76249131385
-
Challenges for Rechargeable Li Batteries
-
J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mater. 22 (2010) 58-603.
-
(2010)
Chem. Mater.
, vol.22
, pp. 58-603
-
-
Goodenough, J.B.1
Kim, Y.2
-
3
-
-
54949157996
-
Metal hydrides for lithium-ion batteries
-
Y. Oumellal, A. Rougier, G.A. Nazri, J.M. Tarascon, L. Aymard, Metal hydrides for lithium-ion batteries, Nat. Mater. 7 (2008) 916-921.
-
(2008)
Nat. Mater.
, vol.7
, pp. 916-921
-
-
Oumellal, Y.1
Rougier, A.2
Nazri, G.A.3
Tarascon, J.M.4
Aymard, L.5
-
4
-
-
84877290228
-
A high power density electrode with ultralow carbon via direct growth of particles on graphene sheets
-
C.H. Lim, A.G. Kannan, H.W. Lee, D.K. Kim, A high power density electrode with ultralow carbon via direct growth of particles on graphene sheets, J. Mater. Chem. A 1 (2013) 6183-6190.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 6183-6190
-
-
Lim, C.H.1
Kannan, A.G.2
Lee, H.W.3
Kim, D.K.4
-
5
-
-
84867297718
-
Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
-
S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries, Adv. Energy Mater. 2 (2012) 710-721.
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 710-721
-
-
Kim, S.W.1
Seo, D.H.2
Ma, X.3
Ceder, G.4
Kang, K.5
-
6
-
-
80052086268
-
Enabling Sodium Batteries Using Lithium-Substituted Sodium Layered Transition Metal Oxide Cathodes
-
D. Kim, S.H. Kang, M. Slater, S. Rood, J.T. Vaughey, N. Karan, M. Balasubramanian, C.S. Johnson, Enabling Sodium Batteries Using Lithium-Substituted Sodium Layered Transition Metal Oxide Cathodes, Adv. Energy Mater. 1 (2011) 333-336.
-
(2011)
Adv. Energy Mater.
, vol.1
, pp. 333-336
-
-
Kim, D.1
Kang, S.H.2
Slater, M.3
Rood, S.4
Vaughey, J.T.5
Karan, N.6
Balasubramanian, M.7
Johnson, C.S.8
-
7
-
-
84939795798
-
A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries
-
Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.-S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries, Nature Commun. 4 (2013) 1-8.
-
(2013)
Nature Commun.
, vol.4
, pp. 1-8
-
-
Sun, Y.1
Zhao, L.2
Pan, H.3
Lu, X.4
Gu, L.5
Hu, Y.-S.6
Li, H.7
Armand, M.8
Ikuhara, Y.9
Chen, L.10
Huang, X.11
-
11
-
-
84867316021
-
4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery
-
4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery, Adv. Energy Mater. 2 (2012) 962-965.
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 962-965
-
-
Zhao, L.1
Zhao, J.2
Hu, Y.S.3
Li, H.4
Zhou, Z.5
Armand, M.6
Chen, L.7
-
12
-
-
84863230428
-
High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
-
L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Niea, J. Liu, High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications, Chem. Commun. 48 (2012) 3321-3323.
-
(2012)
Chem. Commun.
, vol.48
, pp. 3321-3323
-
-
Xiao, L.1
Cao, Y.2
Xiao, J.3
Wang, W.4
Kovarik, L.5
Niea, Z.6
Liu, J.7
-
13
-
-
79954619538
-
4 nanostructures: Synthesis, growth mechanism, properties and applications
-
4 nanostructures: synthesis, growth mechanism, properties and applications, Chem. Commun. 47 (2011) 5130-5141.
-
(2011)
Chem. Commun.
, vol.47
, pp. 5130-5141
-
-
Yang, C.1
Wu, J.2
Hou, Y.3
-
18
-
-
58149311456
-
Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes
-
D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cui, Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes, Nano Lett. 8 (2008) 3948-3952.
-
(2008)
Nano Lett.
, vol.8
, pp. 3948-3952
-
-
Kim, D.K.1
Muralidharan, P.2
Lee, H.W.3
Ruffo, R.4
Yang, Y.5
Chan, C.K.6
Peng, H.7
Huggins, R.A.8
Cui, Y.9
-
19
-
-
84894231706
-
Tin sulfide (SnS) nanorods: Structural, optical and lithium storage property study
-
A.M. Tripathi, S. Mitra, Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study, RSC Adv. 4 (2014) 10358-10366.
-
(2014)
RSC Adv.
, vol.4
, pp. 10358-10366
-
-
Tripathi, A.M.1
Mitra, S.2
-
20
-
-
84886776497
-
4 Nanofibers as High Capacity Li-Ion Battery Anode Material
-
4 Nanofibers as High Capacity Li-Ion Battery Anode Material, ACS Appl. Mater. Interfaces 5 (2013) 9957-9963.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 9957-9963
-
-
Thomas Cherian, C.1
Sundaramurthy, J.2
Reddy, M.V.3
Suresh Kumar, P.4
Mani, K.5
Pliszka, D.6
Sow, C.H.7
Ramakrishna, S.8
Chowdari, B.V.R.9
-
23
-
-
72149119112
-
Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries
-
Y. Piao, H.S. Kim, Y.E. Sung, T. Hyeon, Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries, Chem. Commun. 46 (2010) 118-120.
-
(2010)
Chem. Commun.
, vol.46
, pp. 118-120
-
-
Piao, Y.1
Kim, H.S.2
Sung, Y.E.3
Hyeon, T.4
-
24
-
-
79959990745
-
4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium-Ion Batteries
-
4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium-Ion Batteries, Adv. Funct. Mater. 21 (2011) 2430-2438.
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 2430-2438
-
-
Kang, E.1
Jung, Y.S.2
Cavanagh, A.S.3
Kim, G.-H.4
George, S.M.5
Dillon, A.C.6
Kim, J.K.7
Lee, J.8
-
25
-
-
84858319825
-
4) Microspheres: The Highly Powerful Storage versus Lithium as an Anode for Lithium Ion Batteries
-
4) Microspheres: The Highly Powerful Storage versus Lithium as an Anode for Lithium Ion Batteries, J. Phys. Chem. C 116 (2012) 6495-6502.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 6495-6502
-
-
Xiong, Q.Q.1
Tu, J.P.2
Lu, Y.3
Chen, J.4
Yu, Y.X.5
Qiao, Y.Q.6
Wang, X.L.7
Gu, C.D.8
-
26
-
-
84884158265
-
Conversion reactions for sodium-ion batteries
-
F. Klein, B. Jache, A. Bhide, P. Adelhelm, Conversion reactions for sodium-ion batteries, Phys. Chem. Chem. Phys. 15 (2013) 876-15887.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 876-15887
-
-
Klein, F.1
Jache, B.2
Bhide, A.3
Adelhelm, P.4
-
27
-
-
0037167986
-
Effect of cathode binder on electrochemical properties of lithium rechargeable polymer batteries
-
N.S. Choi, Y.G. Lee, J.K. Park, Effect of cathode binder on electrochemical properties of lithium rechargeable polymer batteries, J. Power Sources 112 (2002) 61-66.
-
(2002)
J. Power Sources
, vol.112
, pp. 61-66
-
-
Choi, N.S.1
Lee, Y.G.2
Park, J.K.3
-
28
-
-
84862286399
-
3 Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties
-
3 Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties, J. Phys. Chem. C 116 (2012) 12508-12513.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 12508-12513
-
-
Wang, Z.1
Madhavi, S.2
Lou, X.W.3
-
29
-
-
80053579364
-
A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
-
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries, Science 334 (2014) 75-79.
-
(2014)
Science
, vol.334
, pp. 75-79
-
-
Kovalenko, I.1
Zdyrko, B.2
Magasinski, A.3
Hertzberg, B.4
Milicev, Z.5
Burtovyy, R.6
Luzinov, I.7
Yushin, G.8
-
30
-
-
84887841324
-
Nickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applications
-
P. Ramesh Kumar, S. Mitra, Nickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applications, RSC Adv. 3 (2013) 25058-25064.
-
(2013)
RSC Adv.
, vol.3
, pp. 25058-25064
-
-
Ramesh Kumar, P.1
Mitra, S.2
-
31
-
-
84901281472
-
Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries
-
M. Dahbi, T. Nakano, N. Yabuuchi, T. Ishikawa, K. Kubota, M. Fuunishi, S. Shibahara, J.-Y. Son, Y.-T. Cui, H. Oji, S. Komaba, Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries, Electrochem. Commun. 44 (2014) 66-69.
-
(2014)
Electrochem. Commun.
, vol.44
, pp. 66-69
-
-
Dahbi, M.1
Nakano, T.2
Yabuuchi, N.3
Ishikawa, T.4
Kubota, K.5
Fuunishi, M.6
Shibahara, S.7
Son, J.-Y.8
Cui, Y.-T.9
Oji, H.10
Komaba, S.11
-
32
-
-
84883294973
-
3 as a high rate cathode material for sodium-ion batteries
-
3 as a high rate cathode material for sodium-ion batteries, J. Mater. Chem. A 1 (2013) 11350-11354.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 11350-11354
-
-
Jung, Y.H.1
Lim, C.H.2
Kim, D.K.3
-
33
-
-
0001162210
-
The Scherrer Formula for X-Ray Particle Size Determination
-
A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978-982.
-
(1939)
Phys. Rev.
, vol.56
, pp. 978-982
-
-
Patterson, A.L.1
-
35
-
-
84896377226
-
4 Sodium-Ion Batteries Using EMS Electrolyte for Energy Storage
-
4 Sodium-Ion Batteries Using EMS Electrolyte for Energy Storage, Nano Lett. 14 (2014) 1620-1626.
-
(2014)
Nano Lett.
, vol.14
, pp. 1620-1626
-
-
Oh, S.M.1
Myung, S.T.2
Yoon, C.S.3
Lu, J.4
Hassoun, J.5
Scrosati, B.6
Amine, K.7
Sun, Y.K.8
-
36
-
-
0542403426
-
Impedance Spectroscopy of Li Electrodes. A General Simple Model of the Li-Solution Interphase in Polar Aprotic Systems
-
A. Zaban, E. Zinigrad, D. Aurbach, Impedance Spectroscopy of Li Electrodes. A General Simple Model of the Li-Solution Interphase in Polar Aprotic Systems, J. Phys. Chem. 100 (1996) 3089-3101.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 3089-3101
-
-
Zaban, A.1
Zinigrad, E.2
Aurbach, D.3
-
37
-
-
35549010298
-
3 Nanoflakes as an Anode Material for Li-Ion Batteries
-
3 Nanoflakes as an Anode Material for Li-Ion Batteries, Adv. Funct. Mater. 17 (2007) 2792-2799.
-
(2007)
Adv. Funct. Mater.
, vol.17
, pp. 2792-2799
-
-
Reddy, M.V.1
Yu, T.2
Sow, C.H.3
Shen, Z.X.4
Lim, C.T.5
Subba Rao, G.V.6
Chowdari, B.V.R.7
-
39
-
-
0043068312
-
Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles
-
Y. Hou, J. Yu, S. Gao, Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles, J. Mater. Chem. 13 (2003) 1983-1987.
-
(2003)
J. Mater. Chem.
, vol.13
, pp. 1983-1987
-
-
Hou, Y.1
Yu, J.2
Gao, S.3
-
40
-
-
84984105972
-
A Note on the Consistency of Values of the Spontaneous or Saturation Magnetization of Polycrystalline Iron and Nickel at 298 K
-
S. Arajs, G.R. Dunmyre, A Note on the Consistency of Values of the Spontaneous or Saturation Magnetization of Polycrystalline Iron and Nickel at 298 K, phys. stat. sol. (b) 21 (1967) 191-195.
-
(1967)
Phys. Stat. Sol. (B)
, vol.21
, pp. 191-195
-
-
Arajs, S.1
Dunmyre, G.R.2
|