-
1
-
-
70449717251
-
-
CQGRDG 0264-9381
-
S.A. Hartnoll, Classical Quantum Gravity 26, 224002 (2009). CQGRDG 0264-9381 10.1088/0264-9381/26/22/224002
-
(2009)
Classical Quantum Gravity
, vol.26
, pp. 224002
-
-
Hartnoll, S.A.1
-
2
-
-
78649705871
-
-
1687-7357
-
J. McGreevy, Adv. High Energy Phys. 2010, 723105 (2010). 1687-7357 10.1155/2010/723105
-
(2010)
Adv. High Energy Phys.
, vol.2010
, pp. 723105
-
-
McGreevy, J.1
-
5
-
-
84862573575
-
-
PRLTAO 0031-9007
-
S.A. Hartnoll and D.M. Hofman, Phys. Rev. Lett. 108, 241601 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.241601
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 241601
-
-
Hartnoll, S.A.1
Hofman, D.M.2
-
6
-
-
84885423660
-
-
NPAHAX 1745-2473
-
A. Donos and S.A. Hartnoll, Nat. Phys. 9, 649 (2013). NPAHAX 1745-2473 10.1038/nphys2701
-
(2013)
Nat. Phys.
, vol.9
, pp. 649
-
-
Donos, A.1
Hartnoll, S.A.2
-
9
-
-
84901423879
-
-
JHEPFG 1029-8479
-
B. Goutéraux, J. High Energy Phys. 04 (2014) 181. JHEPFG 1029-8479 10.1007/JHEP04(2014)181
-
J. High Energy Phys.
, vol.2014
, Issue.4
, pp. 181
-
-
Goutéraux, B.1
-
10
-
-
84907363350
-
-
PRLTAO 0031-9007
-
Y. Ling, C. Niu, J. Wu, Z. Xian, and H.-b. Zhang, Phys. Rev. Lett. 113, 091602 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.091602
-
(2014)
Phys. Rev. Lett.
, vol.113
, pp. 091602
-
-
Ling, Y.1
Niu, C.2
Wu, J.3
Xian, Z.4
Zhang, B.-H.5
-
11
-
-
84871734735
-
-
PRVDAQ 1550-7998
-
A. Donos and S.A. Hartnoll, Phys. Rev. D 86, 124046 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.124046
-
(2012)
Phys. Rev. D
, vol.86
, pp. 124046
-
-
Donos, A.1
Hartnoll, S.A.2
-
17
-
-
84908258613
-
-
With an equal number of positive and negative charge carriers, the charge current and momentum decouple since an applied electric field induces a current, but the net momentum stays zero.
-
With an equal number of positive and negative charge carriers, the charge current and momentum decouple since an applied electric field induces a current, but the net momentum stays zero.
-
-
-
-
18
-
-
0000172010
-
-
1095-0761
-
D. Freedman, S. Gubser, K. Pilch, and N. Warner, Adv. Theor. Math. Phys. 3, 363 (1999). 1095-0761
-
(1999)
Adv. Theor. Math. Phys.
, vol.3
, pp. 363
-
-
Freedman, D.1
Gubser, S.2
Pilch, K.3
Warner, N.4
-
19
-
-
61549123354
-
-
PRVDAQ 1550-7998
-
N. Iqbal and H. Liu, Phys. Rev. D 79, 025023 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.025023
-
(2009)
Phys. Rev. D
, vol.79
, pp. 025023
-
-
Iqbal, N.1
Liu, H.2
-
20
-
-
84908256598
-
-
For stability of the gravity solution, we also require that (Equation presented) can be derived from a certain superpotential, as we will discuss shortly.
-
For stability of the gravity solution, we also require that (Equation presented) can be derived from a certain superpotential, as we will discuss shortly.
-
-
-
-
24
-
-
84908234577
-
-
E. Witten, arXiv:hep-th/0112258.
-
E. Witten, arXiv:hep-th/0112258.
-
-
-
-
26
-
-
84908252733
-
-
From here on, we set (Equation presented).
-
From here on, we set (Equation presented).
-
-
-
-
28
-
-
84908257939
-
-
Even though this term diverges at the horizon, at nonzero temperature (Equation presented) vanishes linearly, so the horizon is a regular singular point of (21). This is no longer true when (Equation presented).
-
Even though this term diverges at the horizon, at nonzero temperature (Equation presented) vanishes linearly, so the horizon is a regular singular point of (21). This is no longer true when (Equation presented).
-
-
-
-
29
-
-
84908225857
-
-
This is of course only valid at nonzero (Equation presented) where we have harmonic time dependence. We compute the low frequency conductivity and then take (Equation presented).
-
This is of course only valid at nonzero (Equation presented) where we have harmonic time dependence. We compute the low frequency conductivity and then take (Equation presented).
-
-
-
-
30
-
-
61349087388
-
-
PRLTAO 0031-9007
-
S.S. Gubser and F.D. Rocha, Phys. Rev. Lett. 102, 061601 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.102.061601
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 061601
-
-
Gubser, S.S.1
Rocha, F.D.2
-
33
-
-
0141889967
-
-
SCIEAS 0036-8075
-
P. Phillips and D. Dalidovich, Science 302, 243 (2003). SCIEAS 0036-8075 10.1126/science.1088253
-
(2003)
Science
, vol.302
, pp. 243
-
-
Phillips, P.1
Dalidovich, D.2
-
34
-
-
84908250804
-
-
This effect is unique to two (spatial) dimensions where phase coherence falloffs are algebraic, (Equation presented) with (Equation presented) [33].
-
This effect is unique to two (spatial) dimensions where phase coherence falloffs are algebraic, (Equation presented) with (Equation presented) [33].
-
-
-
|