-
1
-
-
66249146049
-
Complexity in biomaterials for tissue engineering
-
Place E.S., et al. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8:457-470.
-
(2009)
Nat. Mater.
, vol.8
, pp. 457-470
-
-
Place, E.S.1
-
2
-
-
81255171938
-
Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems
-
Naderi H., et al. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J. Biomater. Appl. 2011, 26:383-417.
-
(2011)
J. Biomater. Appl.
, vol.26
, pp. 383-417
-
-
Naderi, H.1
-
3
-
-
77957793021
-
Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays
-
McCullen S.D., et al. Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. J. Mater. Chem. 2010, 20:8776.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 8776
-
-
McCullen, S.D.1
-
4
-
-
84897114349
-
Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine
-
Li X., et al. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine. J. Biomed. Mater. Res. A 2014, 102:1580-1594.
-
(2014)
J. Biomed. Mater. Res. A
, vol.102
, pp. 1580-1594
-
-
Li, X.1
-
5
-
-
79953843899
-
Tissue engineered scaffold utilizing the reinforced technique
-
Seo Y-K., Park J-K. Tissue engineered scaffold utilizing the reinforced technique. Biotechnol. Bioprocess Eng. 2010, 15:527-533.
-
(2010)
Biotechnol. Bioprocess Eng.
, vol.15
, pp. 527-533
-
-
Seo, Y.-K.1
Park, J.-K.2
-
6
-
-
84876686841
-
Hydrogel composite materials for tissue engineering scaffolds
-
Shapiro J.M., Oyen M.L. Hydrogel composite materials for tissue engineering scaffolds. JOM 2013, 65:505-516.
-
(2013)
JOM
, vol.65
, pp. 505-516
-
-
Shapiro, J.M.1
Oyen, M.L.2
-
7
-
-
84891833699
-
25th Anniversary Article: rational design and applications of hydrogels in regenerative medicine
-
Annabi N., et al. 25th Anniversary Article: rational design and applications of hydrogels in regenerative medicine. Adv. Mater. Res. 2014, 26:85-124.
-
(2014)
Adv. Mater. Res.
, vol.26
, pp. 85-124
-
-
Annabi, N.1
-
8
-
-
84892818677
-
Nanocomposite hydrogels for biomedical applications
-
Gaharwar A.K., et al. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014, 111:441-453.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 441-453
-
-
Gaharwar, A.K.1
-
9
-
-
84875523139
-
State of the art composites comprising electrospun fibres coupled with hydrogels: a review
-
Bosworth L.A., et al. State of the art composites comprising electrospun fibres coupled with hydrogels: a review. Nanomedicine 2013, 9:322-335.
-
(2013)
Nanomedicine
, vol.9
, pp. 322-335
-
-
Bosworth, L.A.1
-
10
-
-
77956645276
-
Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites
-
Xu W., et al. Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomater. 2010, 6:1992-2002.
-
(2010)
Acta Biomater.
, vol.6
, pp. 1992-2002
-
-
Xu, W.1
-
11
-
-
67650169752
-
Hydrogels as extracellular matrix mimics for 3D cell culture
-
Tibbitt M.W., Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009, 103:655-663.
-
(2009)
Biotechnol. Bioeng.
, vol.103
, pp. 655-663
-
-
Tibbitt, M.W.1
Anseth, K.S.2
-
12
-
-
77955666383
-
Mechanical properties of cellularly responsive hydrogels and their experimental determination
-
Kloxin A.M., et al. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 2010, 22:3484-3494.
-
(2010)
Adv. Mater.
, vol.22
, pp. 3484-3494
-
-
Kloxin, A.M.1
-
13
-
-
0042061223
-
Hydrogels for tissue engineering: scaffold design variables and applications
-
Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24:4337-4351.
-
(2003)
Biomaterials
, vol.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
14
-
-
78649654346
-
Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering
-
DeKosky B.J., et al. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng. Part C Methods 2010, 16:1533-1542.
-
(2010)
Tissue Eng. Part C Methods
, vol.16
, pp. 1533-1542
-
-
DeKosky, B.J.1
-
15
-
-
84894643775
-
Design and applications of interpenetrating polymer network hydrogels. A review
-
Dragan E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243:572-590.
-
(2014)
Chem. Eng. J.
, vol.243
, pp. 572-590
-
-
Dragan, E.S.1
-
16
-
-
84859587794
-
Super tough double network hydrogels and their application as biomaterials
-
Haque M.A., et al. Super tough double network hydrogels and their application as biomaterials. Polymer 2012, 53:1805-1822.
-
(2012)
Polymer
, vol.53
, pp. 1805-1822
-
-
Haque, M.A.1
-
17
-
-
84880731338
-
Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness
-
Ronken S., et al. Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech. Model. Mechanobiol. 2013, 12:243-248.
-
(2013)
Biomech. Model. Mechanobiol.
, vol.12
, pp. 243-248
-
-
Ronken, S.1
-
18
-
-
84881662930
-
Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering
-
Rennerfeldt D., et al. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 2013, 34:8241-8257.
-
(2013)
Biomaterials
, vol.34
, pp. 8241-8257
-
-
Rennerfeldt, D.1
-
19
-
-
84857626478
-
Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate
-
Ingavle G.C., et al. Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate. J. Mater. Sci. Mater. Med. 2012, 23:157-170.
-
(2012)
J. Mater. Sci. Mater. Med.
, vol.23
, pp. 157-170
-
-
Ingavle, G.C.1
-
20
-
-
84856566414
-
The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
-
Shin H., et al. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 2012, 33:3143-3152.
-
(2012)
Biomaterials
, vol.33
, pp. 3143-3152
-
-
Shin, H.1
-
21
-
-
84890242253
-
Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds
-
Daniele M., et al. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 2014, 35:1845-1856.
-
(2014)
Biomaterials
, vol.35
, pp. 1845-1856
-
-
Daniele, M.1
-
22
-
-
84890137266
-
Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties
-
Tong X., Yang F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 2014, 35:1807-1815.
-
(2014)
Biomaterials
, vol.35
, pp. 1807-1815
-
-
Tong, X.1
Yang, F.2
-
23
-
-
84892496959
-
Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels
-
Zhao Y., et al. Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels. Adv. Mater. 2014, 26:436-442.
-
(2014)
Adv. Mater.
, vol.26
, pp. 436-442
-
-
Zhao, Y.1
-
24
-
-
0034448636
-
Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods
-
Hassan C.M., Peppas N.A. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci 2000, 153:37-65.
-
(2000)
Adv. Polym. Sci
, vol.153
, pp. 37-65
-
-
Hassan, C.M.1
Peppas, N.A.2
-
25
-
-
80051698584
-
Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants
-
Kobayashi M., Hyu H.S. Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants. Materials 2010, 3:2753-2771.
-
(2010)
Materials
, vol.3
, pp. 2753-2771
-
-
Kobayashi, M.1
Hyu, H.S.2
-
26
-
-
79954991708
-
PH-responsive hydrogels from moldable composite microparticles prepared by coaxial electro-spray drying
-
Park S., et al. pH-responsive hydrogels from moldable composite microparticles prepared by coaxial electro-spray drying. Chem. Eng. J. 2011, 169:348-357.
-
(2011)
Chem. Eng. J.
, vol.169
, pp. 348-357
-
-
Park, S.1
-
27
-
-
84881320160
-
Nano-structured smart hydrogels with rapid response and high elasticity
-
Xia L-W., et al. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013, 4:2226-2236.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2226-2236
-
-
Xia, L.-W.1
-
28
-
-
70349792411
-
Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery
-
Yoo H.S., et al. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009, 61:1033-1042.
-
(2009)
Adv. Drug Deliv. Rev.
, vol.61
, pp. 1033-1042
-
-
Yoo, H.S.1
-
29
-
-
33749454574
-
Electrospinning approaches toward scaffold engineering: a brief overview
-
Boudriot U., et al. Electrospinning approaches toward scaffold engineering: a brief overview. Artif. Organs 2006, 30:785-792.
-
(2006)
Artif. Organs
, vol.30
, pp. 785-792
-
-
Boudriot, U.1
-
31
-
-
84879412130
-
Fiber-based tissue engineering: progress, challenges, and opportunities
-
Tamayol A., et al. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol. Adv. 2013, 31:669-687.
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 669-687
-
-
Tamayol, A.1
-
32
-
-
84877581721
-
Functional materials by electrospinning of polymers
-
Agarwal S., et al. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38:963-991.
-
(2013)
Prog. Polym. Sci.
, vol.38
, pp. 963-991
-
-
Agarwal, S.1
-
33
-
-
77949652722
-
Electrospinning: a fascinating fiber fabrication technique
-
Bhardwaj N., Kundu S.C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28:325-347.
-
(2010)
Biotechnol. Adv.
, vol.28
, pp. 325-347
-
-
Bhardwaj, N.1
Kundu, S.C.2
-
34
-
-
84894327581
-
Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery
-
Rogina A. Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014, 296:221-230.
-
(2014)
Appl. Surf. Sci.
, vol.296
, pp. 221-230
-
-
Rogina, A.1
-
35
-
-
83455201218
-
Recent advances in nanofibre fabrication techniques
-
Nayak R., et al. Recent advances in nanofibre fabrication techniques. Text. Res. J. 2011, 82:129-147.
-
(2011)
Text. Res. J.
, vol.82
, pp. 129-147
-
-
Nayak, R.1
-
36
-
-
79955374429
-
Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers
-
Iwamoto S., et al. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 2011, 12:831-836.
-
(2011)
Biomacromolecules
, vol.12
, pp. 831-836
-
-
Iwamoto, S.1
-
37
-
-
84878007129
-
Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity
-
Liu L., et al. Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity. Carbohydr. Polym. 2013, 97:152-158.
-
(2013)
Carbohydr. Polym.
, vol.97
, pp. 152-158
-
-
Liu, L.1
-
38
-
-
84874586294
-
Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration
-
Ren L., et al. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale 2013, 5:2337-2345.
-
(2013)
Nanoscale
, vol.5
, pp. 2337-2345
-
-
Ren, L.1
-
39
-
-
84897727882
-
Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol
-
Merkle V.M., et al. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers 2014, 101:336-346.
-
(2014)
Biopolymers
, vol.101
, pp. 336-346
-
-
Merkle, V.M.1
-
40
-
-
84878305307
-
Failure mechanisms in fibrous scaffolds
-
Koh C., et al. Failure mechanisms in fibrous scaffolds. Acta Biomater. 2013, 9:7326-7334.
-
(2013)
Acta Biomater.
, vol.9
, pp. 7326-7334
-
-
Koh, C.1
-
41
-
-
84887847370
-
Local mechanical properties of electrospun fibers correlate to their internal nanostructure
-
Camposeo A., et al. Local mechanical properties of electrospun fibers correlate to their internal nanostructure. Nano Lett. 2013, 13:5056-5062.
-
(2013)
Nano Lett.
, vol.13
, pp. 5056-5062
-
-
Camposeo, A.1
-
42
-
-
33845409414
-
Size-dependent elastic modulus of single electroactive polymer nanofibers
-
Shin M.K., et al. Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 2006, 89:231929.
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 231929
-
-
Shin, M.K.1
-
43
-
-
52949144224
-
Effect of fiber diameter on tensile properties of electrospun poly(e{open}-caprolactone)
-
Wong S-C., et al. Effect of fiber diameter on tensile properties of electrospun poly(e{open}-caprolactone). Polymer 2008, 49:4713-4722.
-
(2008)
Polymer
, vol.49
, pp. 4713-4722
-
-
Wong, S.-C.1
-
44
-
-
84884153582
-
The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers
-
Janković B., et al. The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers. Int. J. Pharm. 2013, 455:338-347.
-
(2013)
Int. J. Pharm.
, vol.455
, pp. 338-347
-
-
Janković, B.1
-
45
-
-
84884211504
-
Electrospinning collagen/chitosan/poly(L-lactic acid-co-e{open}-caprolactone) to form a vascular graft: mechanical and biological characterization
-
Yin A., et al. Electrospinning collagen/chitosan/poly(L-lactic acid-co-e{open}-caprolactone) to form a vascular graft: mechanical and biological characterization. J. Biomed. Mater. Res. A 2013, 101:1292-1301.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101
, pp. 1292-1301
-
-
Yin, A.1
-
46
-
-
84892725722
-
Electrospun silk-elastin-like fibre mats for tissue engineering applications
-
Machado R., et al. Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomed. Mater. 2013, 8:065009.
-
(2013)
Biomed. Mater.
, vol.8
, pp. 065009
-
-
Machado, R.1
-
47
-
-
84908245819
-
Electrospun gelatin composite nanofibres: a review on structural and mechanical characterizations
-
Nuge T., et al. Electrospun gelatin composite nanofibres: a review on structural and mechanical characterizations. Regenerative Res. 2013, 2:39-42.
-
(2013)
Regenerative Res.
, vol.2
, pp. 39-42
-
-
Nuge, T.1
-
48
-
-
84892528442
-
Effects of Fe 2+ ions on morphologies, microstructures and mechanical properties of electrospun nylon-6 nanofibers
-
Kimura N., et al. Effects of Fe 2+ ions on morphologies, microstructures and mechanical properties of electrospun nylon-6 nanofibers. Polym. Int. 2014, 63:266-272.
-
(2014)
Polym. Int.
, vol.63
, pp. 266-272
-
-
Kimura, N.1
-
49
-
-
84884681553
-
Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats
-
Ji Y., et al. Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr. Polym. 2014, 101:68-74.
-
(2014)
Carbohydr. Polym.
, vol.101
, pp. 68-74
-
-
Ji, Y.1
-
50
-
-
78449304606
-
Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties
-
Linh N.T.B., et al. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J. Biomed. Mater. Res. B. Appl. Biomater. 2010, 95:184-191.
-
(2010)
J. Biomed. Mater. Res. B. Appl. Biomater.
, vol.95
, pp. 184-191
-
-
Linh, N.T.B.1
-
51
-
-
33644796640
-
Mechanical properties of electrospun fibrinogen structures
-
McManus M.C., et al. Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2006, 2:19-28.
-
(2006)
Acta Biomater.
, vol.2
, pp. 19-28
-
-
McManus, M.C.1
-
52
-
-
84897584018
-
Molecular orientation in electrospun fibers: from mats to single fibers
-
Richard-Lacroix M., Pellerin C. Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 2013, 46:9473-9493.
-
(2013)
Macromolecules
, vol.46
, pp. 9473-9493
-
-
Richard-Lacroix, M.1
Pellerin, C.2
-
54
-
-
20544473452
-
Fibre reinforced composites in aircraft construction
-
Soutis C. Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 2005, 41:143-151.
-
(2005)
Prog. Aerosp. Sci.
, vol.41
, pp. 143-151
-
-
Soutis, C.1
-
55
-
-
79953647971
-
Hydrogel-electrospun mesh composites for coronary artery bypass grafts
-
McMahon R.E., et al. Hydrogel-electrospun mesh composites for coronary artery bypass grafts. Tissue Eng. Part C Methods 2011, 17:451-461.
-
(2011)
Tissue Eng. Part C Methods
, vol.17
, pp. 451-461
-
-
McMahon, R.E.1
-
56
-
-
79952008242
-
Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold
-
Hong Y., et al. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 2011, 32:3387-3394.
-
(2011)
Biomaterials
, vol.32
, pp. 3387-3394
-
-
Hong, Y.1
-
57
-
-
79953076136
-
Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering
-
Coburn J., et al. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct. Syst. 2011, 7:213-222.
-
(2011)
Smart Struct. Syst.
, vol.7
, pp. 213-222
-
-
Coburn, J.1
-
58
-
-
84885187838
-
Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering
-
Mirahmadi F., et al. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater. Sci. Eng. C 2013, 33:4786-4794.
-
(2013)
Mater. Sci. Eng. C
, vol.33
, pp. 4786-4794
-
-
Mirahmadi, F.1
-
59
-
-
84872764385
-
Development of nanofiber-reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique
-
Thorvaldsson A., et al. Development of nanofiber-reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique. J. Appl. Polym. Sci. 2013, 128:1158-1163.
-
(2013)
J. Appl. Polym. Sci.
, vol.128
, pp. 1158-1163
-
-
Thorvaldsson, A.1
-
60
-
-
84876491174
-
Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea
-
Tonsomboon K., Oyen M.L. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J. Mech. Behav. Biomed. Mater. 2013, 21:185-194.
-
(2013)
J. Mech. Behav. Biomed. Mater.
, vol.21
, pp. 185-194
-
-
Tonsomboon, K.1
Oyen, M.L.2
-
61
-
-
84886088204
-
Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites
-
Han N., et al. Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites. J. Biomater. Sci. Polym. Ed. 2013, 24:2018-2030.
-
(2013)
J. Biomater. Sci. Polym. Ed.
, vol.24
, pp. 2018-2030
-
-
Han, N.1
-
62
-
-
84896548621
-
Mechanical behaviour of electrospun fibre-reinforced hydrogels
-
Strange D.G.T., et al. Mechanical behaviour of electrospun fibre-reinforced hydrogels. J. Mater. Sci. Mater. Med. 2014, 25:681-690.
-
(2014)
J. Mater. Sci. Mater. Med.
, vol.25
, pp. 681-690
-
-
Strange, D.G.T.1
-
63
-
-
84892604874
-
Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering
-
Thayer P.S., et al. Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering. Biomacromolecules 2014, 15:75-83.
-
(2014)
Biomacromolecules
, vol.15
, pp. 75-83
-
-
Thayer, P.S.1
-
64
-
-
84874883258
-
Hydrogel reinforced by short albumin fibers: mechanical characterization and assessment of biocompatibility
-
Regev O., et al. Hydrogel reinforced by short albumin fibers: mechanical characterization and assessment of biocompatibility. Macromol. Mater. Eng. 2013, 298:283-291.
-
(2013)
Macromol. Mater. Eng.
, vol.298
, pp. 283-291
-
-
Regev, O.1
-
65
-
-
77952418607
-
Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate
-
Hsieh A., et al. Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate. Soft Matter 2010, 6:2227.
-
(2010)
Soft Matter
, vol.6
, pp. 2227
-
-
Hsieh, A.1
-
66
-
-
84857395764
-
Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications
-
Kai D., et al. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 2012, 23:095705.
-
(2012)
Nanotechnology
, vol.23
, pp. 095705
-
-
Kai, D.1
-
67
-
-
79951678611
-
A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers
-
Zhou C., Wu Q. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf. B: Biointerfaces 2011, 84:155-162.
-
(2011)
Colloids Surf. B: Biointerfaces
, vol.84
, pp. 155-162
-
-
Zhou, C.1
Wu, Q.2
-
68
-
-
84887445564
-
Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings
-
Gonzalez J.S., et al. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater. Sci. Eng. C: Mater. Biol. Appl. 2014, 34:54-61.
-
(2014)
Mater. Sci. Eng. C: Mater. Biol. Appl.
, vol.34
, pp. 54-61
-
-
Gonzalez, J.S.1
-
69
-
-
84890406836
-
Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties
-
Jonoobi M., et al. Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos. Part A Appl. Sci. Manuf. 2014, 58:30-35.
-
(2014)
Compos. Part A Appl. Sci. Manuf.
, vol.58
, pp. 30-35
-
-
Jonoobi, M.1
-
70
-
-
77958082518
-
Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement
-
Holloway J.L., et al. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater. 2010, 6:4716-4724.
-
(2010)
Acta Biomater.
, vol.6
, pp. 4716-4724
-
-
Holloway, J.L.1
-
71
-
-
78650854306
-
Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering
-
Moutos F.T., et al. Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering. Macromol. Biosci. 2010, 10:1355-1364.
-
(2010)
Macromol. Biosci.
, vol.10
, pp. 1355-1364
-
-
Moutos, F.T.1
-
72
-
-
77950813444
-
Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering
-
Moutos F.T., Guilak F. Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng. Part A 2010, 16:1291-1301.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 1291-1301
-
-
Moutos, F.T.1
Guilak, F.2
-
73
-
-
52649181644
-
Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs
-
Ekaputra A.K., et al. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 2008, 9:2097-2103.
-
(2008)
Biomacromolecules
, vol.9
, pp. 2097-2103
-
-
Ekaputra, A.K.1
-
74
-
-
84880343299
-
Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements
-
Holloway J.L., et al. Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements. Compos. Sci. Technol. 2013, 85:118-125.
-
(2013)
Compos. Sci. Technol.
, vol.85
, pp. 118-125
-
-
Holloway, J.L.1
-
75
-
-
84890563787
-
Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage
-
Liao I-C., et al. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv. Funct. Mater. 2013, 23:5833-5839.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 5833-5839
-
-
Liao, I.-C.1
-
76
-
-
84889883862
-
Injectable hydrogel incorporating with nanoyarn for bone regeneration
-
Liu W., et al. Injectable hydrogel incorporating with nanoyarn for bone regeneration. J. Biomater. Sci. Polym. Ed. 2014, 25:168-180.
-
(2014)
J. Biomater. Sci. Polym. Ed.
, vol.25
, pp. 168-180
-
-
Liu, W.1
-
79
-
-
52649121242
-
Reinforcement of porous alginate scaffolds by incorporating electrospun fibres
-
Sakai S., et al. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres. Biomed. Mater. 2008, 3:034102.
-
(2008)
Biomed. Mater.
, vol.3
, pp. 034102
-
-
Sakai, S.1
|