메뉴 건너뛰기




Volumn 32, Issue 11, 2014, Pages 564-570

Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds

Author keywords

Biocompatibility; Composites; Electrospinning; Hydrogel; Mechanical testing; Nanofibers

Indexed keywords

BIOCOMPATIBILITY; BIOMECHANICS; CELL ENGINEERING; CELL PROLIFERATION; COMPOSITE MATERIALS; ELECTROSPINNING; HYDROGELS; MECHANICAL PROPERTIES; MECHANICAL TESTING; NANOFIBERS; TISSUE;

EID: 84908247686     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2014.09.001     Document Type: Review
Times cited : (139)

References (79)
  • 1
    • 66249146049 scopus 로고    scopus 로고
    • Complexity in biomaterials for tissue engineering
    • Place E.S., et al. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8:457-470.
    • (2009) Nat. Mater. , vol.8 , pp. 457-470
    • Place, E.S.1
  • 2
    • 81255171938 scopus 로고    scopus 로고
    • Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems
    • Naderi H., et al. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J. Biomater. Appl. 2011, 26:383-417.
    • (2011) J. Biomater. Appl. , vol.26 , pp. 383-417
    • Naderi, H.1
  • 3
    • 77957793021 scopus 로고    scopus 로고
    • Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays
    • McCullen S.D., et al. Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. J. Mater. Chem. 2010, 20:8776.
    • (2010) J. Mater. Chem. , vol.20 , pp. 8776
    • McCullen, S.D.1
  • 4
    • 84897114349 scopus 로고    scopus 로고
    • Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine
    • Li X., et al. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine. J. Biomed. Mater. Res. A 2014, 102:1580-1594.
    • (2014) J. Biomed. Mater. Res. A , vol.102 , pp. 1580-1594
    • Li, X.1
  • 5
    • 79953843899 scopus 로고    scopus 로고
    • Tissue engineered scaffold utilizing the reinforced technique
    • Seo Y-K., Park J-K. Tissue engineered scaffold utilizing the reinforced technique. Biotechnol. Bioprocess Eng. 2010, 15:527-533.
    • (2010) Biotechnol. Bioprocess Eng. , vol.15 , pp. 527-533
    • Seo, Y.-K.1    Park, J.-K.2
  • 6
    • 84876686841 scopus 로고    scopus 로고
    • Hydrogel composite materials for tissue engineering scaffolds
    • Shapiro J.M., Oyen M.L. Hydrogel composite materials for tissue engineering scaffolds. JOM 2013, 65:505-516.
    • (2013) JOM , vol.65 , pp. 505-516
    • Shapiro, J.M.1    Oyen, M.L.2
  • 7
    • 84891833699 scopus 로고    scopus 로고
    • 25th Anniversary Article: rational design and applications of hydrogels in regenerative medicine
    • Annabi N., et al. 25th Anniversary Article: rational design and applications of hydrogels in regenerative medicine. Adv. Mater. Res. 2014, 26:85-124.
    • (2014) Adv. Mater. Res. , vol.26 , pp. 85-124
    • Annabi, N.1
  • 8
    • 84892818677 scopus 로고    scopus 로고
    • Nanocomposite hydrogels for biomedical applications
    • Gaharwar A.K., et al. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014, 111:441-453.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 441-453
    • Gaharwar, A.K.1
  • 9
    • 84875523139 scopus 로고    scopus 로고
    • State of the art composites comprising electrospun fibres coupled with hydrogels: a review
    • Bosworth L.A., et al. State of the art composites comprising electrospun fibres coupled with hydrogels: a review. Nanomedicine 2013, 9:322-335.
    • (2013) Nanomedicine , vol.9 , pp. 322-335
    • Bosworth, L.A.1
  • 10
    • 77956645276 scopus 로고    scopus 로고
    • Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites
    • Xu W., et al. Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomater. 2010, 6:1992-2002.
    • (2010) Acta Biomater. , vol.6 , pp. 1992-2002
    • Xu, W.1
  • 11
    • 67650169752 scopus 로고    scopus 로고
    • Hydrogels as extracellular matrix mimics for 3D cell culture
    • Tibbitt M.W., Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009, 103:655-663.
    • (2009) Biotechnol. Bioeng. , vol.103 , pp. 655-663
    • Tibbitt, M.W.1    Anseth, K.S.2
  • 12
    • 77955666383 scopus 로고    scopus 로고
    • Mechanical properties of cellularly responsive hydrogels and their experimental determination
    • Kloxin A.M., et al. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 2010, 22:3484-3494.
    • (2010) Adv. Mater. , vol.22 , pp. 3484-3494
    • Kloxin, A.M.1
  • 13
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24:4337-4351.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 14
    • 78649654346 scopus 로고    scopus 로고
    • Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering
    • DeKosky B.J., et al. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng. Part C Methods 2010, 16:1533-1542.
    • (2010) Tissue Eng. Part C Methods , vol.16 , pp. 1533-1542
    • DeKosky, B.J.1
  • 15
    • 84894643775 scopus 로고    scopus 로고
    • Design and applications of interpenetrating polymer network hydrogels. A review
    • Dragan E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243:572-590.
    • (2014) Chem. Eng. J. , vol.243 , pp. 572-590
    • Dragan, E.S.1
  • 16
    • 84859587794 scopus 로고    scopus 로고
    • Super tough double network hydrogels and their application as biomaterials
    • Haque M.A., et al. Super tough double network hydrogels and their application as biomaterials. Polymer 2012, 53:1805-1822.
    • (2012) Polymer , vol.53 , pp. 1805-1822
    • Haque, M.A.1
  • 17
    • 84880731338 scopus 로고    scopus 로고
    • Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness
    • Ronken S., et al. Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech. Model. Mechanobiol. 2013, 12:243-248.
    • (2013) Biomech. Model. Mechanobiol. , vol.12 , pp. 243-248
    • Ronken, S.1
  • 18
    • 84881662930 scopus 로고    scopus 로고
    • Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering
    • Rennerfeldt D., et al. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 2013, 34:8241-8257.
    • (2013) Biomaterials , vol.34 , pp. 8241-8257
    • Rennerfeldt, D.1
  • 19
    • 84857626478 scopus 로고    scopus 로고
    • Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate
    • Ingavle G.C., et al. Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate. J. Mater. Sci. Mater. Med. 2012, 23:157-170.
    • (2012) J. Mater. Sci. Mater. Med. , vol.23 , pp. 157-170
    • Ingavle, G.C.1
  • 20
    • 84856566414 scopus 로고    scopus 로고
    • The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
    • Shin H., et al. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 2012, 33:3143-3152.
    • (2012) Biomaterials , vol.33 , pp. 3143-3152
    • Shin, H.1
  • 21
    • 84890242253 scopus 로고    scopus 로고
    • Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds
    • Daniele M., et al. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 2014, 35:1845-1856.
    • (2014) Biomaterials , vol.35 , pp. 1845-1856
    • Daniele, M.1
  • 22
    • 84890137266 scopus 로고    scopus 로고
    • Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties
    • Tong X., Yang F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 2014, 35:1807-1815.
    • (2014) Biomaterials , vol.35 , pp. 1807-1815
    • Tong, X.1    Yang, F.2
  • 23
    • 84892496959 scopus 로고    scopus 로고
    • Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels
    • Zhao Y., et al. Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels. Adv. Mater. 2014, 26:436-442.
    • (2014) Adv. Mater. , vol.26 , pp. 436-442
    • Zhao, Y.1
  • 24
    • 0034448636 scopus 로고    scopus 로고
    • Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods
    • Hassan C.M., Peppas N.A. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci 2000, 153:37-65.
    • (2000) Adv. Polym. Sci , vol.153 , pp. 37-65
    • Hassan, C.M.1    Peppas, N.A.2
  • 25
    • 80051698584 scopus 로고    scopus 로고
    • Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants
    • Kobayashi M., Hyu H.S. Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants. Materials 2010, 3:2753-2771.
    • (2010) Materials , vol.3 , pp. 2753-2771
    • Kobayashi, M.1    Hyu, H.S.2
  • 26
    • 79954991708 scopus 로고    scopus 로고
    • PH-responsive hydrogels from moldable composite microparticles prepared by coaxial electro-spray drying
    • Park S., et al. pH-responsive hydrogels from moldable composite microparticles prepared by coaxial electro-spray drying. Chem. Eng. J. 2011, 169:348-357.
    • (2011) Chem. Eng. J. , vol.169 , pp. 348-357
    • Park, S.1
  • 27
    • 84881320160 scopus 로고    scopus 로고
    • Nano-structured smart hydrogels with rapid response and high elasticity
    • Xia L-W., et al. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013, 4:2226-2236.
    • (2013) Nat. Commun. , vol.4 , pp. 2226-2236
    • Xia, L.-W.1
  • 28
    • 70349792411 scopus 로고    scopus 로고
    • Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery
    • Yoo H.S., et al. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009, 61:1033-1042.
    • (2009) Adv. Drug Deliv. Rev. , vol.61 , pp. 1033-1042
    • Yoo, H.S.1
  • 29
    • 33749454574 scopus 로고    scopus 로고
    • Electrospinning approaches toward scaffold engineering: a brief overview
    • Boudriot U., et al. Electrospinning approaches toward scaffold engineering: a brief overview. Artif. Organs 2006, 30:785-792.
    • (2006) Artif. Organs , vol.30 , pp. 785-792
    • Boudriot, U.1
  • 31
    • 84879412130 scopus 로고    scopus 로고
    • Fiber-based tissue engineering: progress, challenges, and opportunities
    • Tamayol A., et al. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol. Adv. 2013, 31:669-687.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 669-687
    • Tamayol, A.1
  • 32
    • 84877581721 scopus 로고    scopus 로고
    • Functional materials by electrospinning of polymers
    • Agarwal S., et al. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38:963-991.
    • (2013) Prog. Polym. Sci. , vol.38 , pp. 963-991
    • Agarwal, S.1
  • 33
    • 77949652722 scopus 로고    scopus 로고
    • Electrospinning: a fascinating fiber fabrication technique
    • Bhardwaj N., Kundu S.C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28:325-347.
    • (2010) Biotechnol. Adv. , vol.28 , pp. 325-347
    • Bhardwaj, N.1    Kundu, S.C.2
  • 34
    • 84894327581 scopus 로고    scopus 로고
    • Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery
    • Rogina A. Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014, 296:221-230.
    • (2014) Appl. Surf. Sci. , vol.296 , pp. 221-230
    • Rogina, A.1
  • 35
    • 83455201218 scopus 로고    scopus 로고
    • Recent advances in nanofibre fabrication techniques
    • Nayak R., et al. Recent advances in nanofibre fabrication techniques. Text. Res. J. 2011, 82:129-147.
    • (2011) Text. Res. J. , vol.82 , pp. 129-147
    • Nayak, R.1
  • 36
    • 79955374429 scopus 로고    scopus 로고
    • Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers
    • Iwamoto S., et al. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 2011, 12:831-836.
    • (2011) Biomacromolecules , vol.12 , pp. 831-836
    • Iwamoto, S.1
  • 37
    • 84878007129 scopus 로고    scopus 로고
    • Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity
    • Liu L., et al. Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity. Carbohydr. Polym. 2013, 97:152-158.
    • (2013) Carbohydr. Polym. , vol.97 , pp. 152-158
    • Liu, L.1
  • 38
    • 84874586294 scopus 로고    scopus 로고
    • Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration
    • Ren L., et al. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale 2013, 5:2337-2345.
    • (2013) Nanoscale , vol.5 , pp. 2337-2345
    • Ren, L.1
  • 39
    • 84897727882 scopus 로고    scopus 로고
    • Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol
    • Merkle V.M., et al. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers 2014, 101:336-346.
    • (2014) Biopolymers , vol.101 , pp. 336-346
    • Merkle, V.M.1
  • 40
    • 84878305307 scopus 로고    scopus 로고
    • Failure mechanisms in fibrous scaffolds
    • Koh C., et al. Failure mechanisms in fibrous scaffolds. Acta Biomater. 2013, 9:7326-7334.
    • (2013) Acta Biomater. , vol.9 , pp. 7326-7334
    • Koh, C.1
  • 41
    • 84887847370 scopus 로고    scopus 로고
    • Local mechanical properties of electrospun fibers correlate to their internal nanostructure
    • Camposeo A., et al. Local mechanical properties of electrospun fibers correlate to their internal nanostructure. Nano Lett. 2013, 13:5056-5062.
    • (2013) Nano Lett. , vol.13 , pp. 5056-5062
    • Camposeo, A.1
  • 42
    • 33845409414 scopus 로고    scopus 로고
    • Size-dependent elastic modulus of single electroactive polymer nanofibers
    • Shin M.K., et al. Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 2006, 89:231929.
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 231929
    • Shin, M.K.1
  • 43
    • 52949144224 scopus 로고    scopus 로고
    • Effect of fiber diameter on tensile properties of electrospun poly(e{open}-caprolactone)
    • Wong S-C., et al. Effect of fiber diameter on tensile properties of electrospun poly(e{open}-caprolactone). Polymer 2008, 49:4713-4722.
    • (2008) Polymer , vol.49 , pp. 4713-4722
    • Wong, S.-C.1
  • 44
    • 84884153582 scopus 로고    scopus 로고
    • The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers
    • Janković B., et al. The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers. Int. J. Pharm. 2013, 455:338-347.
    • (2013) Int. J. Pharm. , vol.455 , pp. 338-347
    • Janković, B.1
  • 45
    • 84884211504 scopus 로고    scopus 로고
    • Electrospinning collagen/chitosan/poly(L-lactic acid-co-e{open}-caprolactone) to form a vascular graft: mechanical and biological characterization
    • Yin A., et al. Electrospinning collagen/chitosan/poly(L-lactic acid-co-e{open}-caprolactone) to form a vascular graft: mechanical and biological characterization. J. Biomed. Mater. Res. A 2013, 101:1292-1301.
    • (2013) J. Biomed. Mater. Res. A , vol.101 , pp. 1292-1301
    • Yin, A.1
  • 46
    • 84892725722 scopus 로고    scopus 로고
    • Electrospun silk-elastin-like fibre mats for tissue engineering applications
    • Machado R., et al. Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomed. Mater. 2013, 8:065009.
    • (2013) Biomed. Mater. , vol.8 , pp. 065009
    • Machado, R.1
  • 47
    • 84908245819 scopus 로고    scopus 로고
    • Electrospun gelatin composite nanofibres: a review on structural and mechanical characterizations
    • Nuge T., et al. Electrospun gelatin composite nanofibres: a review on structural and mechanical characterizations. Regenerative Res. 2013, 2:39-42.
    • (2013) Regenerative Res. , vol.2 , pp. 39-42
    • Nuge, T.1
  • 48
    • 84892528442 scopus 로고    scopus 로고
    • Effects of Fe 2+ ions on morphologies, microstructures and mechanical properties of electrospun nylon-6 nanofibers
    • Kimura N., et al. Effects of Fe 2+ ions on morphologies, microstructures and mechanical properties of electrospun nylon-6 nanofibers. Polym. Int. 2014, 63:266-272.
    • (2014) Polym. Int. , vol.63 , pp. 266-272
    • Kimura, N.1
  • 49
    • 84884681553 scopus 로고    scopus 로고
    • Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats
    • Ji Y., et al. Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr. Polym. 2014, 101:68-74.
    • (2014) Carbohydr. Polym. , vol.101 , pp. 68-74
    • Ji, Y.1
  • 50
    • 78449304606 scopus 로고    scopus 로고
    • Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties
    • Linh N.T.B., et al. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J. Biomed. Mater. Res. B. Appl. Biomater. 2010, 95:184-191.
    • (2010) J. Biomed. Mater. Res. B. Appl. Biomater. , vol.95 , pp. 184-191
    • Linh, N.T.B.1
  • 51
    • 33644796640 scopus 로고    scopus 로고
    • Mechanical properties of electrospun fibrinogen structures
    • McManus M.C., et al. Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2006, 2:19-28.
    • (2006) Acta Biomater. , vol.2 , pp. 19-28
    • McManus, M.C.1
  • 52
    • 84897584018 scopus 로고    scopus 로고
    • Molecular orientation in electrospun fibers: from mats to single fibers
    • Richard-Lacroix M., Pellerin C. Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 2013, 46:9473-9493.
    • (2013) Macromolecules , vol.46 , pp. 9473-9493
    • Richard-Lacroix, M.1    Pellerin, C.2
  • 54
    • 20544473452 scopus 로고    scopus 로고
    • Fibre reinforced composites in aircraft construction
    • Soutis C. Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 2005, 41:143-151.
    • (2005) Prog. Aerosp. Sci. , vol.41 , pp. 143-151
    • Soutis, C.1
  • 55
    • 79953647971 scopus 로고    scopus 로고
    • Hydrogel-electrospun mesh composites for coronary artery bypass grafts
    • McMahon R.E., et al. Hydrogel-electrospun mesh composites for coronary artery bypass grafts. Tissue Eng. Part C Methods 2011, 17:451-461.
    • (2011) Tissue Eng. Part C Methods , vol.17 , pp. 451-461
    • McMahon, R.E.1
  • 56
    • 79952008242 scopus 로고    scopus 로고
    • Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold
    • Hong Y., et al. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 2011, 32:3387-3394.
    • (2011) Biomaterials , vol.32 , pp. 3387-3394
    • Hong, Y.1
  • 57
    • 79953076136 scopus 로고    scopus 로고
    • Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering
    • Coburn J., et al. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct. Syst. 2011, 7:213-222.
    • (2011) Smart Struct. Syst. , vol.7 , pp. 213-222
    • Coburn, J.1
  • 58
    • 84885187838 scopus 로고    scopus 로고
    • Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering
    • Mirahmadi F., et al. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater. Sci. Eng. C 2013, 33:4786-4794.
    • (2013) Mater. Sci. Eng. C , vol.33 , pp. 4786-4794
    • Mirahmadi, F.1
  • 59
    • 84872764385 scopus 로고    scopus 로고
    • Development of nanofiber-reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique
    • Thorvaldsson A., et al. Development of nanofiber-reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique. J. Appl. Polym. Sci. 2013, 128:1158-1163.
    • (2013) J. Appl. Polym. Sci. , vol.128 , pp. 1158-1163
    • Thorvaldsson, A.1
  • 60
    • 84876491174 scopus 로고    scopus 로고
    • Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea
    • Tonsomboon K., Oyen M.L. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J. Mech. Behav. Biomed. Mater. 2013, 21:185-194.
    • (2013) J. Mech. Behav. Biomed. Mater. , vol.21 , pp. 185-194
    • Tonsomboon, K.1    Oyen, M.L.2
  • 61
    • 84886088204 scopus 로고    scopus 로고
    • Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites
    • Han N., et al. Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites. J. Biomater. Sci. Polym. Ed. 2013, 24:2018-2030.
    • (2013) J. Biomater. Sci. Polym. Ed. , vol.24 , pp. 2018-2030
    • Han, N.1
  • 62
    • 84896548621 scopus 로고    scopus 로고
    • Mechanical behaviour of electrospun fibre-reinforced hydrogels
    • Strange D.G.T., et al. Mechanical behaviour of electrospun fibre-reinforced hydrogels. J. Mater. Sci. Mater. Med. 2014, 25:681-690.
    • (2014) J. Mater. Sci. Mater. Med. , vol.25 , pp. 681-690
    • Strange, D.G.T.1
  • 63
    • 84892604874 scopus 로고    scopus 로고
    • Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering
    • Thayer P.S., et al. Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering. Biomacromolecules 2014, 15:75-83.
    • (2014) Biomacromolecules , vol.15 , pp. 75-83
    • Thayer, P.S.1
  • 64
    • 84874883258 scopus 로고    scopus 로고
    • Hydrogel reinforced by short albumin fibers: mechanical characterization and assessment of biocompatibility
    • Regev O., et al. Hydrogel reinforced by short albumin fibers: mechanical characterization and assessment of biocompatibility. Macromol. Mater. Eng. 2013, 298:283-291.
    • (2013) Macromol. Mater. Eng. , vol.298 , pp. 283-291
    • Regev, O.1
  • 65
    • 77952418607 scopus 로고    scopus 로고
    • Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate
    • Hsieh A., et al. Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate. Soft Matter 2010, 6:2227.
    • (2010) Soft Matter , vol.6 , pp. 2227
    • Hsieh, A.1
  • 66
    • 84857395764 scopus 로고    scopus 로고
    • Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications
    • Kai D., et al. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 2012, 23:095705.
    • (2012) Nanotechnology , vol.23 , pp. 095705
    • Kai, D.1
  • 67
    • 79951678611 scopus 로고    scopus 로고
    • A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers
    • Zhou C., Wu Q. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf. B: Biointerfaces 2011, 84:155-162.
    • (2011) Colloids Surf. B: Biointerfaces , vol.84 , pp. 155-162
    • Zhou, C.1    Wu, Q.2
  • 68
    • 84887445564 scopus 로고    scopus 로고
    • Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings
    • Gonzalez J.S., et al. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater. Sci. Eng. C: Mater. Biol. Appl. 2014, 34:54-61.
    • (2014) Mater. Sci. Eng. C: Mater. Biol. Appl. , vol.34 , pp. 54-61
    • Gonzalez, J.S.1
  • 69
    • 84890406836 scopus 로고    scopus 로고
    • Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties
    • Jonoobi M., et al. Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos. Part A Appl. Sci. Manuf. 2014, 58:30-35.
    • (2014) Compos. Part A Appl. Sci. Manuf. , vol.58 , pp. 30-35
    • Jonoobi, M.1
  • 70
    • 77958082518 scopus 로고    scopus 로고
    • Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement
    • Holloway J.L., et al. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater. 2010, 6:4716-4724.
    • (2010) Acta Biomater. , vol.6 , pp. 4716-4724
    • Holloway, J.L.1
  • 71
    • 78650854306 scopus 로고    scopus 로고
    • Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering
    • Moutos F.T., et al. Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering. Macromol. Biosci. 2010, 10:1355-1364.
    • (2010) Macromol. Biosci. , vol.10 , pp. 1355-1364
    • Moutos, F.T.1
  • 72
    • 77950813444 scopus 로고    scopus 로고
    • Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering
    • Moutos F.T., Guilak F. Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng. Part A 2010, 16:1291-1301.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 1291-1301
    • Moutos, F.T.1    Guilak, F.2
  • 73
    • 52649181644 scopus 로고    scopus 로고
    • Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs
    • Ekaputra A.K., et al. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 2008, 9:2097-2103.
    • (2008) Biomacromolecules , vol.9 , pp. 2097-2103
    • Ekaputra, A.K.1
  • 74
    • 84880343299 scopus 로고    scopus 로고
    • Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements
    • Holloway J.L., et al. Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements. Compos. Sci. Technol. 2013, 85:118-125.
    • (2013) Compos. Sci. Technol. , vol.85 , pp. 118-125
    • Holloway, J.L.1
  • 75
    • 84890563787 scopus 로고    scopus 로고
    • Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage
    • Liao I-C., et al. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv. Funct. Mater. 2013, 23:5833-5839.
    • (2013) Adv. Funct. Mater. , vol.23 , pp. 5833-5839
    • Liao, I.-C.1
  • 76
    • 84889883862 scopus 로고    scopus 로고
    • Injectable hydrogel incorporating with nanoyarn for bone regeneration
    • Liu W., et al. Injectable hydrogel incorporating with nanoyarn for bone regeneration. J. Biomater. Sci. Polym. Ed. 2014, 25:168-180.
    • (2014) J. Biomater. Sci. Polym. Ed. , vol.25 , pp. 168-180
    • Liu, W.1
  • 79
    • 52649121242 scopus 로고    scopus 로고
    • Reinforcement of porous alginate scaffolds by incorporating electrospun fibres
    • Sakai S., et al. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres. Biomed. Mater. 2008, 3:034102.
    • (2008) Biomed. Mater. , vol.3 , pp. 034102
    • Sakai, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.