메뉴 건너뛰기




Volumn 24, Issue 9, 2014, Pages 1279-1300

A new fast discrete S-transform and decision tree for the classification and monitoring of power quality disturbance waveforms

Author keywords

Decision tree; Discrete fast S transform; Disturbance monitoring; Disturbance pattern classification; Power quality

Indexed keywords

BINARY TREES; DECISION TREES; MATHEMATICAL TRANSFORMATIONS;

EID: 84908144700     PISSN: None     EISSN: 20507038     Source Type: Journal    
DOI: 10.1002/etep.1776     Document Type: Article
Times cited : (44)

References (23)
  • 2
    • 35148890744 scopus 로고    scopus 로고
    • Exact harmonics/interharmonics calculation using adaptive window width
    • Zhu TX. Exact harmonics/interharmonics calculation using adaptive window width. IEEE Transactions on Power Delivery 2007; 22(4):2279-2288.
    • (2007) IEEE Transactions on Power Delivery , vol.22 , Issue.4 , pp. 2279-2288
    • Zhu, T.X.1
  • 3
    • 77954497617 scopus 로고    scopus 로고
    • Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks
    • Masoum MAS, Jamali S, Ghaffarzadeh N. Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks. IET Science, Measurement and Technology 2010; 4(4):193-205.
    • (2010) IET Science, Measurement and Technology , vol.4 , Issue.4 , pp. 193-205
    • Masoum, M.A.S.1    Jamali, S.2    Ghaffarzadeh, N.3
  • 4
    • 36348998225 scopus 로고    scopus 로고
    • An improved hilbert-huang method for analysis of time-varying waveforms in power quality
    • Senroy N, Suryanarayanan S, Ribeiro PF. An Improved Hilbert-Huang Method for Analysis of Time-Varying Waveforms in Power Quality. IEEE Transactions on Power Systems 2007; 22(4):1843-1850.
    • (2007) IEEE Transactions on Power Systems , vol.22 , Issue.4 , pp. 1843-1850
    • Senroy, N.1    Suryanarayanan, S.2    Ribeiro, P.F.3
  • 5
    • 3242813754 scopus 로고    scopus 로고
    • Classification of power quality events using optimal time-frequency representations - Part 2: Application
    • Wang M, Rowe GI, Mamishev AV. Classification of power quality events using optimal time-frequency representations - Part 2: Application. IEEE Transactions on Power Delivery 2004; 19(3):1496-1503.
    • (2004) IEEE Transactions on Power Delivery , vol.19 , Issue.3 , pp. 1496-1503
    • Wang, M.1    Rowe, G.I.2    Mamishev, A.V.3
  • 6
    • 7244258874 scopus 로고    scopus 로고
    • Wavelet-based neural network for power disturbance recognition and classification
    • Gaing Z-L. Wavelet-based neural network for power disturbance recognition and classification. IEEE Transactions on Power Delivery 2004; 19(4):1560-1568.
    • (2004) IEEE Transactions on Power Delivery , vol.19 , Issue.4 , pp. 1560-1568
    • Gaing, Z.-L.1
  • 7
    • 0036121852 scopus 로고    scopus 로고
    • Power disturbance classifier using a rule-based method and wavelet packet-based Hidden Markov Model
    • Chung J, Powers EJ, Grady WM, Bhatt SC. Power disturbance classifier using a rule-based method and wavelet packet-based Hidden Markov Model. IEEE Transactions on Power Delivery 2004; 17(1):233-241.
    • (2004) IEEE Transactions on Power Delivery , vol.17 , Issue.1 , pp. 233-241
    • Chung, J.1    Powers, E.J.2    Grady, W.M.3    Bhatt, S.C.4
  • 9
    • 44949148333 scopus 로고    scopus 로고
    • Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines
    • Hu GS, Zhu FF, Ren Z. Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines. Expert Systems with Applications 2008; 35(1-2):143-149.
    • (2008) Expert Systems with Applications , vol.35 , Issue.1-2 , pp. 143-149
    • Hu, G.S.1    Zhu, F.F.2    Ren, Z.3
  • 11
    • 45449113326 scopus 로고    scopus 로고
    • An effective wavelet-based feature extraction method for classification of power quality disturbance signals
    • Uyar M, Yildirim S, Gencoglu MT. An effective wavelet-based feature extraction method for classification of power quality disturbance signals. Electric Power Systems Research 2008; 78(10):1747-1755.
    • (2008) Electric Power Systems Research , vol.78 , Issue.10 , pp. 1747-1755
    • Uyar, M.1    Yildirim, S.2    Gencoglu, M.T.3
  • 12
    • 0037397903 scopus 로고    scopus 로고
    • Power quality disturbance data compression, detection, and classification using integrated spline wavelet and S-transform
    • Dash PK, Panigrahi BK, Sahoo DK, Panda G. Power quality disturbance data compression, detection, and classification using integrated spline wavelet and S-transform. IEEE Transactions on Power Delivery 2003; 18(2):595-600.
    • (2003) IEEE Transactions on Power Delivery , vol.18 , Issue.2 , pp. 595-600
    • Dash, P.K.1    Panigrahi, B.K.2    Sahoo, D.K.3    Panda, G.4
  • 13
    • 70349755575 scopus 로고    scopus 로고
    • Power quality disturbance classification using S- transform and radial basis network
    • Jayasree T, Devaraj D, Sukanesh R. Power quality disturbance classification using S- transform and radial basis network. Applied Artificial Intelligence 2009; 23(7):680-693.
    • (2009) Applied Artificial Intelligence , vol.23 , Issue.7 , pp. 680-693
    • Jayasree, T.1    Devaraj, D.2    Sukanesh, R.3
  • 14
    • 85008043357 scopus 로고    scopus 로고
    • Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization
    • Biswal B, Dash PK, Panigrahi BK. Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization. IEEE Transactions on Industrial Electronics 2009; 56(1):212-220.
    • (2009) IEEE Transactions on Industrial Electronics , vol.56 , Issue.1 , pp. 212-220
    • Biswal, B.1    Dash, P.K.2    Panigrahi, B.K.3
  • 15
    • 59349107715 scopus 로고    scopus 로고
    • Power quality disturbance classification utilizing S-transform and binary feature matrix method
    • Nguyen T, Liao Y. Power quality disturbance classification utilizing S-transform and binary feature matrix method. Electric Power Systems Research 2009; 79(4):569-575.
    • (2009) Electric Power Systems Research , vol.79 , Issue.4 , pp. 569-575
    • Nguyen, T.1    Liao, Y.2
  • 16
    • 35148889227 scopus 로고    scopus 로고
    • Detection and classification of power quality disturbances using S-transform and modular neural network
    • Bhende CN, Mishra S, Panigrahi BK. Detection and classification of power quality disturbances using S-transform and modular neural network. Electric Power Systems Research 2008; 78(1):122-128.
    • (2008) Electric Power Systems Research , vol.78 , Issue.1 , pp. 122-128
    • Bhende, C.N.1    Mishra, S.2    Panigrahi, B.K.3
  • 17
    • 70449726933 scopus 로고    scopus 로고
    • Pattern recognition of power signal disturbances using S transform and TT transform
    • Suja S, Jerome J. Pattern recognition of power signal disturbances using S transform and TT transform. International Journal of Power and Energy Systems 2010; 32(1):37-53.
    • (2010) International Journal of Power and Energy Systems , vol.32 , Issue.1 , pp. 37-53
    • Suja, S.1    Jerome, J.2
  • 20
    • 72949107442 scopus 로고    scopus 로고
    • A General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly
    • Brown RA, Louis Lauzon M, Frayne R. A General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly. IEEE Transactions on Signal Processing 2010; 58(1):281-290.
    • (2010) IEEE Transactions on Signal Processing , vol.58 , Issue.1 , pp. 281-290
    • Brown, R.A.1    Louis Lauzon, M.2    Frayne, R.3
  • 21
    • 37849189824 scopus 로고    scopus 로고
    • A basis for efficient representation of the S-transform
    • Stockwell RG. A basis for efficient representation of the S-transform, Digital Signal Processing 2007; 17(1):371-393.
    • (2007) Digital Signal Processing , vol.17 , Issue.1 , pp. 371-393
    • Stockwell, R.G.1
  • 23
    • 79959556087 scopus 로고    scopus 로고
    • Optimal decision tree based multi-class support vector machine
    • Bala M, Agrawal RK. Optimal Decision Tree Based Multi-class Support Vector Machine. Informatica 2011; 35:197-209.
    • (2011) Informatica , vol.35 , pp. 197-209
    • Bala, M.1    Agrawal, R.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.