메뉴 건너뛰기




Volumn 148, Issue , 2015, Pages 63-71

Forecasting furrow irrigation infiltration using artificial neural networks

Author keywords

Artificial neural networks; Furrow irrigation; Infiltrated water volume

Indexed keywords

FURROW IRRIGATION; INFILTRATED WATER;

EID: 84908139902     PISSN: 03783774     EISSN: 18732283     Source Type: Journal    
DOI: 10.1016/j.agwat.2014.09.015     Document Type: Article
Times cited : (35)

References (55)
  • 1
    • 84857985004 scopus 로고    scopus 로고
    • Field assessment of friction head loss and friction correction factor equations
    • Alazba A., Mattar M.A., ElNesr M.N., Amin M.T. Field assessment of friction head loss and friction correction factor equations. J. Irrig. Drain. Eng., ASCE 2012, 138(2):166-176.
    • (2012) J. Irrig. Drain. Eng., ASCE , vol.138 , Issue.2 , pp. 166-176
    • Alazba, A.1    Mattar, M.A.2    ElNesr, M.N.3    Amin, M.T.4
  • 2
    • 78650282266 scopus 로고    scopus 로고
    • Modeling water infiltration rate under conventional tillage systems on a clay soil using artificial neural networks
    • Al-Janobi A.A., Abdulwahed M.A., Khaled A.A. Modeling water infiltration rate under conventional tillage systems on a clay soil using artificial neural networks. Aust. J. Basic Appl. Sci. 2010, 4(8):3869-3879.
    • (2010) Aust. J. Basic Appl. Sci. , vol.4 , Issue.8 , pp. 3869-3879
    • Al-Janobi, A.A.1    Abdulwahed, M.A.2    Khaled, A.A.3
  • 3
    • 0038028750 scopus 로고    scopus 로고
    • Estimation of advance and infiltration equations in furrow irrigation for untested discharges
    • Alvarez J.A.R. Estimation of advance and infiltration equations in furrow irrigation for untested discharges. Agric. Water Manage. 2003, 60:227-239.
    • (2003) Agric. Water Manage. , vol.60 , pp. 227-239
    • Alvarez, J.A.R.1
  • 4
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design and application
    • Basheer L.A., Hajmeer M. Artificial neural networks: fundamentals, computing, design and application. J. Microbiol. Methods 2000, 43:3-31.
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, L.A.1    Hajmeer, M.2
  • 6
    • 0023960570 scopus 로고
    • Infiltration from irrigation advance data. II. Experimental
    • Blair A.W., Smerdon E.T. Infiltration from irrigation advance data. II. Experimental. J. Irrig. Drain. Eng., ASCE 1988, 114:18-30.
    • (1988) J. Irrig. Drain. Eng., ASCE , vol.114 , pp. 18-30
    • Blair, A.W.1    Smerdon, E.T.2
  • 7
    • 0020222257 scopus 로고
    • Rapid evaluation of furrow irrigation efficiencies
    • ASAE, St. Joseph, MI
    • Burt C.M., Robb G.A., Hanon A. Rapid evaluation of furrow irrigation efficiencies. ASAE Paper No. 82.2537 1982, ASAE, St. Joseph, MI.
    • (1982) ASAE Paper No. 82.2537
    • Burt, C.M.1    Robb, G.A.2    Hanon, A.3
  • 8
    • 0001241544 scopus 로고
    • Evaluation of intake rate constants as related to advance of water in surface irrigation
    • Christiansen J.E., Bishop A.A., Kiefer F.W., Fok Yu-Si. Evaluation of intake rate constants as related to advance of water in surface irrigation. Trans. ASAE 1966, 9(5):671-674.
    • (1966) Trans. ASAE , vol.9 , Issue.5 , pp. 671-674
    • Christiansen, J.E.1    Bishop, A.A.2    Kiefer, F.W.3    Fok, Y.-S.4
  • 9
    • 0019902361 scopus 로고
    • Field evaluation of furrow infiltration and advance functions
    • Elliott R.L., Walker W.R. Field evaluation of furrow infiltration and advance functions. Trans. ASAE 1982, 25(2):396-400.
    • (1982) Trans. ASAE , vol.25 , Issue.2 , pp. 396-400
    • Elliott, R.L.1    Walker, W.R.2
  • 10
    • 0020968246 scopus 로고
    • Infiltration parameters from furrow irrigation advance data
    • Elliott R.L., Walker W.R., Skogerboe G.V. Infiltration parameters from furrow irrigation advance data. Trans. ASAE 1983, 26(6):1726-1731.
    • (1983) Trans. ASAE , vol.26 , Issue.6 , pp. 1726-1731
    • Elliott, R.L.1    Walker, W.R.2    Skogerboe, G.V.3
  • 11
    • 0342476854 scopus 로고
    • General solution for the evaluation of advance of water in furrow irrigation: theory and practice
    • (in English)
    • El-Shafei Y.Z. General solution for the evaluation of advance of water in furrow irrigation: theory and practice. Z. Kulturtech. Flurbereinig. 1980, 21:8-19. (in English).
    • (1980) Z. Kulturtech. Flurbereinig. , vol.21 , pp. 8-19
    • El-Shafei, Y.Z.1
  • 12
    • 0030734367 scopus 로고    scopus 로고
    • Application of the optimization method for estimating infiltration characteristics in furrow irrigation and its comparison with other methods
    • Esfandiari M., Maheshwari B.L. Application of the optimization method for estimating infiltration characteristics in furrow irrigation and its comparison with other methods. Agric. Water Manage. 1997, 34:169-185.
    • (1997) Agric. Water Manage. , vol.34 , pp. 169-185
    • Esfandiari, M.1    Maheshwari, B.L.2
  • 13
    • 12844286513 scopus 로고    scopus 로고
    • Field valuation of furrow irrigation models
    • Esfandiari M., Maheshwari B.L. Field valuation of furrow irrigation models. J. Agric. Eng. Res. 2001, 79(4):229-236.
    • (2001) J. Agric. Eng. Res. , vol.79 , Issue.4 , pp. 229-236
    • Esfandiari, M.1    Maheshwari, B.L.2
  • 14
    • 77955711789 scopus 로고    scopus 로고
    • Evaluation of various quick methods for estimating furrow and border infiltration parameters
    • Ebrahimian H., Liaghat A., Ghanbarian-Alavijeh B., Abbasi F. Evaluation of various quick methods for estimating furrow and border infiltration parameters. Irrig. Sci. 2010, 28(6):479-488.
    • (2010) Irrig. Sci. , vol.28 , Issue.6 , pp. 479-488
    • Ebrahimian, H.1    Liaghat, A.2    Ghanbarian-Alavijeh, B.3    Abbasi, F.4
  • 15
    • 84908123795 scopus 로고
    • Soil map of the world (revised legend)
    • FAO-UNESCO, Roma
    • FAO-UNESCO Soil map of the world (revised legend). World Soil Resources Reports 60 1988, 142. FAO-UNESCO, Roma.
    • (1988) World Soil Resources Reports 60 , pp. 142
  • 16
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach
    • Fernando T., Maier H.R., Dandy G.C. Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach. J. Hydrol. 2009, 367:165-176.
    • (2009) J. Hydrol. , vol.367 , pp. 165-176
    • Fernando, T.1    Maier, H.R.2    Dandy, G.C.3
  • 17
    • 8444249218 scopus 로고    scopus 로고
    • Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point
    • Givi J., Prasher S.O., Patel R.M. Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agric. Water Manage. 2004, 70(2):83-96.
    • (2004) Agric. Water Manage. , vol.70 , Issue.2 , pp. 83-96
    • Givi, J.1    Prasher, S.O.2    Patel, R.M.3
  • 20
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in the renewable energy systems applications: a review
    • Kalogirou S.A. Artificial neural networks in the renewable energy systems applications: a review. Renewable Sustainable Energy Rev. 2001, 5:373-401.
    • (2001) Renewable Sustainable Energy Rev. , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 24
    • 33947695717 scopus 로고    scopus 로고
    • The artificial neural networks approach for evaluation of temperature and density profiles of salt gradient solar pond
    • Kurt H., Atik K., Ozkaymak M., Binark A.K. The artificial neural networks approach for evaluation of temperature and density profiles of salt gradient solar pond. J. Energy Int. 2007, 80(1):46-51.
    • (2007) J. Energy Int. , vol.80 , Issue.1 , pp. 46-51
    • Kurt, H.1    Atik, K.2    Ozkaymak, M.3    Binark, A.K.4
  • 25
    • 0015250319 scopus 로고
    • Volume balance method for computing infiltration rates in surface irrigation
    • Lal R., Pandya A.C. Volume balance method for computing infiltration rates in surface irrigation. Trans. ASAE 1972, 15(1):69-72.
    • (1972) Trans. ASAE , vol.15 , Issue.1 , pp. 69-72
    • Lal, R.1    Pandya, A.C.2
  • 26
    • 42049121124 scopus 로고    scopus 로고
    • Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country Northern Spain
    • Landeras G., Ortiz-Barredo A., López J.J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country Northern Spain. Agric. Water Manage. 2008, 95(5):553-565.
    • (2008) Agric. Water Manage. , vol.95 , Issue.5 , pp. 553-565
    • Landeras, G.1    Ortiz-Barredo, A.2    López, J.J.3
  • 27
    • 66449088932 scopus 로고    scopus 로고
    • Forecasting weekly evapotranspiration with ARIMA and artificial neural network models
    • Landeras G., Ortiz-Barredo A., López J.J. Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J. Irrig. Drain. Eng., ASCE 2009, 135(3):323-334.
    • (2009) J. Irrig. Drain. Eng., ASCE , vol.135 , Issue.3 , pp. 323-334
    • Landeras, G.1    Ortiz-Barredo, A.2    López, J.J.3
  • 28
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of "goodness-of fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35(1):233-241.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 29
    • 0000581918 scopus 로고
    • Analysis of border irrigation
    • Lewis M.R., Milne W.E. Analysis of border irrigation. Agric. Eng. 1938, 19:267-272.
    • (1938) Agric. Eng. , vol.19 , pp. 267-272
    • Lewis, M.R.1    Milne, W.E.2
  • 30
    • 19544388572 scopus 로고    scopus 로고
    • A spreadsheet model to evaluate sloping furrow irrigation accounting for infiltration variability
    • Mateos L., Oyonarte N.A. A spreadsheet model to evaluate sloping furrow irrigation accounting for infiltration variability. Agric. Water Manage. 2005, 76:62-75.
    • (2005) Agric. Water Manage. , vol.76 , pp. 62-75
    • Mateos, L.1    Oyonarte, N.A.2
  • 31
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May R.J., Maier H.R., Dandy G.C., Fernando T. Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Modell. Softw. 2008, 23(10-11):1312-1326.
    • (2008) Environ. Modell. Softw. , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.4
  • 32
    • 32544458461 scopus 로고    scopus 로고
    • Modeling the infiltration process with a multi-layer perceptron artificial neural network
    • Nestorl S.Y. Modeling the infiltration process with a multi-layer perceptron artificial neural network. Journal-des Sciences Hydrologiques 2006, 51(1):3-20.
    • (2006) Journal-des Sciences Hydrologiques , vol.51 , Issue.1 , pp. 3-20
    • Nestorl, S.Y.1
  • 33
    • 0000729659 scopus 로고
    • Infiltration equations from rate of advance data
    • Norum D.E., Gray D.M. Infiltration equations from rate of advance data. J. Irrig. Drain. Eng., ASCE 1970, 96(2):111-119.
    • (1970) J. Irrig. Drain. Eng., ASCE , vol.96 , Issue.2 , pp. 111-119
    • Norum, D.E.1    Gray, D.M.2
  • 34
    • 0042769377 scopus 로고    scopus 로고
    • Accounting for soil variability in the evaluation of furrow irrigation
    • Oyonarte N.A., Mateos L. Accounting for soil variability in the evaluation of furrow irrigation. Trans. ASAE 2003, 45(6):85-94.
    • (2003) Trans. ASAE , vol.45 , Issue.6 , pp. 85-94
    • Oyonarte, N.A.1    Mateos, L.2
  • 35
    • 16544387224 scopus 로고    scopus 로고
    • Simulation model for level furrows. I: Analysis of field experiments
    • Playán E., J.Rodriguez A., Garcia-Navarro P. Simulation model for level furrows. I: Analysis of field experiments. J. Irrig. Drain. Eng., ASCE 2004, 130(2):106-112.
    • (2004) J. Irrig. Drain. Eng., ASCE , vol.130 , Issue.2 , pp. 106-112
    • Playán, E.1    J.Rodriguez, A.2    Garcia-Navarro, P.3
  • 36
    • 59049088362 scopus 로고    scopus 로고
    • Improved irrigation water demand forecasting using a soft-computing hybrid model
    • Pulido-Calvo I., Gutiérrez-Estrada J.C. Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosyst. Eng. 2009, 102:202-218.
    • (2009) Biosyst. Eng. , vol.102 , pp. 202-218
    • Pulido-Calvo, I.1    Gutiérrez-Estrada, J.C.2
  • 37
    • 34250206968 scopus 로고    scopus 로고
    • Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems
    • Pulido-Calvo I., Montesinos P., Roldán J., Ruiz-Navarro F.J. Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosyst. Eng. 2007, 97:283-293.
    • (2007) Biosyst. Eng. , vol.97 , pp. 283-293
    • Pulido-Calvo, I.1    Montesinos, P.2    Roldán, J.3    Ruiz-Navarro, F.J.4
  • 38
    • 84908143041 scopus 로고    scopus 로고
    • Estimation of infiltration rate in the Vadose zone: compilation of simple mathematical models
    • United States Environmental Protection Agency, 26
    • Ravi V., Williams J.R. Estimation of infiltration rate in the Vadose zone: compilation of simple mathematical models. Vol. I. EPA/600/R-87/128a 1998, United States Environmental Protection Agency, 26.
    • (1998) Vol. I. EPA/600/R-87/128a
    • Ravi, V.1    Williams, J.R.2
  • 39
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 40
    • 0030700629 scopus 로고    scopus 로고
    • Neural network modeling of heat transfer to liquid particle mixtures in cans subjected to end-over-end processing
    • Sablani S.S., Ramaswamy H.S., Sreekanth S., Prasher S.O. Neural network modeling of heat transfer to liquid particle mixtures in cans subjected to end-over-end processing. Food Res. Int. 1997, 30(2):105-116.
    • (1997) Food Res. Int. , vol.30 , Issue.2 , pp. 105-116
    • Sablani, S.S.1    Ramaswamy, H.S.2    Sreekanth, S.3    Prasher, S.O.4
  • 41
    • 0028975091 scopus 로고
    • Intake parameters from advance and wetting phases of surface irrigation
    • Scaloppi E.J., Merkley G.P., Willardson L.S. Intake parameters from advance and wetting phases of surface irrigation. J. Irrig. Drain. Eng., ASCE 1995, 121(1):57-70.
    • (1995) J. Irrig. Drain. Eng., ASCE , vol.121 , Issue.1 , pp. 57-70
    • Scaloppi, E.J.1    Merkley, G.P.2    Willardson, L.S.3
  • 42
    • 34848829552 scopus 로고    scopus 로고
    • Infiltration and hydraulic behavior of an anguiform furrow in heavy texture soils of Iran
    • Sepaskhah A.R., Shaabani M.K. Infiltration and hydraulic behavior of an anguiform furrow in heavy texture soils of Iran. Biosyst. Eng. 2007, 98:248-256.
    • (2007) Biosyst. Eng. , vol.98 , pp. 248-256
    • Sepaskhah, A.R.1    Shaabani, M.K.2
  • 43
    • 84908135136 scopus 로고
    • A Study of Furrow Irrigation on a Luvisol Soil
    • University of Evora, Evora, (Doctoral dissertation presented to the University of Evora)
    • Serralheiro R.P. Um estudo da rega por sulcos num solo Argiluviado 1988, University of Evora, Evora, (Doctoral dissertation presented to the University of Evora).
    • (1988) Um estudo da rega por sulcos num solo Argiluviado
    • Serralheiro, R.P.1
  • 44
    • 84908124543 scopus 로고    scopus 로고
    • Speculative work in neural network forecasting: an application to Egyptian cotton production
    • Shaalan K., Riad M., Amer A., Baraka H. Speculative work in neural network forecasting: an application to Egyptian cotton production. Egypt. Comput. J., ISSR, Cairo Univ. 1999, 27(1):58-79.
    • (1999) Egypt. Comput. J., ISSR, Cairo Univ. , vol.27 , Issue.1 , pp. 58-79
    • Shaalan, K.1    Riad, M.2    Amer, A.3    Baraka, H.4
  • 48
    • 0035851981 scopus 로고    scopus 로고
    • Furrow infiltration estimation from time to a single advance point
    • Valiantzas J.D., Aggelides S., Sassalu A. Furrow infiltration estimation from time to a single advance point. Agric. Water Manage. 2001, 52:17-32.
    • (2001) Agric. Water Manage. , vol.52 , pp. 17-32
    • Valiantzas, J.D.1    Aggelides, S.2    Sassalu, A.3
  • 49
    • 0038797507 scopus 로고
    • Guidelines for designing and evaluating surface irrigation system
    • FAO, Rome
    • Walker W.R. Guidelines for designing and evaluating surface irrigation system. FAO Irrigation and Drainage Paper No. 45 1989, 137. FAO, Rome.
    • (1989) FAO Irrigation and Drainage Paper No. 45 , pp. 137
    • Walker, W.R.1
  • 50
    • 33747813524 scopus 로고    scopus 로고
    • Development of the revised USDA-NRCS intake families for surface irrigation
    • Walker W.R., Prestwich C., Spofford T. Development of the revised USDA-NRCS intake families for surface irrigation. Agric. Water Manage. 2006, 85:157-164.
    • (2006) Agric. Water Manage. , vol.85 , pp. 157-164
    • Walker, W.R.1    Prestwich, C.2    Spofford, T.3
  • 52
    • 37249009694 scopus 로고    scopus 로고
    • Using groundwater artificial neural network models for adaptive water supply management
    • Wanakule N., Aly A. Using groundwater artificial neural network models for adaptive water supply management. Proc., Impacts of Global Climate Change 2005, 89.
    • (2005) Proc., Impacts of Global Climate Change , pp. 89
    • Wanakule, N.1    Aly, A.2
  • 53
    • 0015034017 scopus 로고
    • Overland flow hydrograph analysis to determine infiltration function
    • Wu L.-P. Overland flow hydrograph analysis to determine infiltration function. Trans. ASAE 1971, 14(2):295-300.
    • (1971) Trans. ASAE , vol.14 , Issue.2 , pp. 295-300
    • Wu, L.-P.1
  • 54
    • 0038238083 scopus 로고    scopus 로고
    • Application of artificial neural network to predict the optimal start time for heating system in building
    • Yang I.H., Yeo M.S., Kim K.W. Application of artificial neural network to predict the optimal start time for heating system in building. Energy Convers. Manage. 2003, 44:2791-2809.
    • (2003) Energy Convers. Manage. , vol.44 , pp. 2791-2809
    • Yang, I.H.1    Yeo, M.S.2    Kim, K.W.3
  • 55
    • 33947362356 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network and minimum climatological data
    • Zanetti S.S., Sousa E.F., Oliveira V.P.S. Estimating evapotranspiration using artificial neural network and minimum climatological data. J. Irrig. Drain. Eng., ASCE 2007, 133(2):83-89.
    • (2007) J. Irrig. Drain. Eng., ASCE , vol.133 , Issue.2 , pp. 83-89
    • Zanetti, S.S.1    Sousa, E.F.2    Oliveira, V.P.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.