메뉴 건너뛰기




Volumn 58, Issue , 2014, Pages 147-153

Super-parameter selection for Gaussian-Kernel SVM based on outlier-resisting

Author keywords

Classification accuracy; Computational complexity; Outlier resisting; Super parameter selection; Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; SAMPLING; SCREENING; STATISTICS;

EID: 84907858258     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2014.08.019     Document Type: Article
Times cited : (24)

References (12)
  • 1
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V.N. Vapnik An overview of statistical learning theory IEEE Trans. Neural Networks 10 5 1999 988 999
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 2
    • 84901032570 scopus 로고    scopus 로고
    • Support vector machine based optimization of multi-fault classification of gears with evolutionary algorithms from time-frequency vibration data
    • D.J. Bordoloi, and R. Tiwari Support vector machine based optimization of multi-fault classification of gears with evolutionary algorithms from time-frequency vibration data Measurement: J. Int. Measurement Confederation 55 2014 1 14
    • (2014) Measurement: J. Int. Measurement Confederation , vol.55 , pp. 1-14
    • Bordoloi, D.J.1    Tiwari, R.2
  • 3
    • 84893390675 scopus 로고    scopus 로고
    • A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems
    • B.B. Ekici A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems Measurement: J. Int. Measurement Confederation 50 1 2014 255 262
    • (2014) Measurement: J. Int. Measurement Confederation , vol.50 , Issue.1 , pp. 255-262
    • Ekici, B.B.1
  • 4
    • 80054980487 scopus 로고    scopus 로고
    • Application of least squares-support vector machine in system-level temperature compensation of ring laser gyroscope
    • G. Wei, G. Li, Y. Wu, and X.W. long Application of least squares-support vector machine in system-level temperature compensation of ring laser gyroscope Measurement 44 10 2011 1898 1903
    • (2011) Measurement , vol.44 , Issue.10 , pp. 1898-1903
    • Wei, G.1    Li, G.2    Wu, Y.3    Long, X.W.4
  • 5
    • 0002714543 scopus 로고    scopus 로고
    • Making large scale SVM learning practical
    • B. Schölkopf, C.J.C. Burges, A.J. Smola, MIT Press Cambridge MA
    • T. Joachims Making large scale SVM learning practical B. Schölkopf, C.J.C. Burges, A.J. Smola, Advances in Kernel Methods: Support Vector Learning 1998 MIT Press Cambridge MA
    • (1998) Advances in Kernel Methods: Support Vector Learning
    • Joachims, T.1
  • 6
    • 79955626219 scopus 로고    scopus 로고
    • Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker
    • J. Huang, X.G. Hu, and F. Yang Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker Measurement 44 6 2011 1018 1027
    • (2011) Measurement , vol.44 , Issue.6 , pp. 1018-1027
    • Huang, J.1    Hu, X.G.2    Yang, F.3
  • 7
    • 84885551457 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm
    • K.H. Zhu, and X.G. Song A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm Measurement: J. Int. Measurement Confederation 47 1 2014 669 675
    • (2014) Measurement: J. Int. Measurement Confederation , vol.47 , Issue.1 , pp. 669-675
    • Zhu, K.H.1    Song, X.G.2
  • 8
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S.S. Keerthi, and C.J. Lin Asymptotic behaviors of support vector machines with Gaussian kernel Neural Comput. 15 7 2003 1667 1689
    • (2003) Neural Comput. , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 9
    • 79952898711 scopus 로고    scopus 로고
    • A practical approach to model selection for support vector machines with a Gaussian kernel
    • M. Varewyck, and J.P. Martens A practical approach to model selection for support vector machines with a Gaussian kernel IEEE Trans. Syst. Man Cybernet. - Part B: Cybernet. 41 2 2011 330 340
    • (2011) IEEE Trans. Syst. Man Cybernet. - Part B: Cybernet. , vol.41 , Issue.2 , pp. 330-340
    • Varewyck, M.1    Martens, J.P.2
  • 10
    • 85008025524 scopus 로고    scopus 로고
    • Sensitivity analysis of k-fold cross validation in prediction error estimation
    • J.D. Rodriguez, A. Perez, and J.A. Lozano Sensitivity analysis of k-fold cross validation in prediction error estimation IEEE Trans. Pattern Anal. Machine Intel. 32 3 2010 569 575
    • (2010) IEEE Trans. Pattern Anal. Machine Intel. , vol.32 , Issue.3 , pp. 569-575
    • Rodriguez, J.D.1    Perez, A.2    Lozano, J.A.3
  • 11
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • K. Duan, S.S. Keerthi, and A.N. Poo Evaluation of simple performance measures for tuning SVM hyperparameters Neurocomputing 51 1 2003 41 59
    • (2003) Neurocomputing , vol.51 , Issue.1 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.