-
1
-
-
84883817963
-
Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application
-
Lee J., Lee P., Lee H.B., Hong S., Lee I., Yeo J., Lee S.S., Kim T.-S., Lee D., Ko S.H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 2013, 23:4171-4176.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 4171-4176
-
-
Lee, J.1
Lee, P.2
Lee, H.B.3
Hong, S.4
Lee, I.5
Yeo, J.6
Lee, S.S.7
Kim, T.-S.8
Lee, D.9
Ko, S.H.10
-
2
-
-
84889675359
-
Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization
-
Vandeparre H., Watson D., Lacour S.P. Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization. Appl. Phys. Lett. 2013, 103:204103.
-
(2013)
Appl. Phys. Lett.
, vol.103
, pp. 204103
-
-
Vandeparre, H.1
Watson, D.2
Lacour, S.P.3
-
3
-
-
84894113683
-
Highly stretchable carbon nanotube transistors with ion gel gate dielectrics
-
Xu F., Wu M.-Y., Safron N.S., Roy S.S., Jacobberger R.M., Bindl D.J., Seo J.-H., Chang T.-H., Ma Z., Arnold M.S. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett. 2014, 14:682-686.
-
(2014)
Nano Lett.
, vol.14
, pp. 682-686
-
-
Xu, F.1
Wu, M.-Y.2
Safron, N.S.3
Roy, S.S.4
Jacobberger, R.M.5
Bindl, D.J.6
Seo, J.-H.7
Chang, T.-H.8
Ma, Z.9
Arnold, M.S.10
-
4
-
-
84894639397
-
Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes
-
Liang J., Li L., Tong K., Ren Z., Hu W., Niu X., Chen Y., Pei Q. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8:1590-1600.
-
(2014)
ACS Nano
, vol.8
, pp. 1590-1600
-
-
Liang, J.1
Li, L.2
Tong, K.3
Ren, Z.4
Hu, W.5
Niu, X.6
Chen, Y.7
Pei, Q.8
-
5
-
-
84867453192
-
High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates
-
Kwon J.Y., Lee D.H., Chitambar M., Maldonado S., Tuteja A., Boukai A. High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates. Nano Lett. 2012, 12:5143-5147.
-
(2012)
Nano Lett.
, vol.12
, pp. 5143-5147
-
-
Kwon, J.Y.1
Lee, D.H.2
Chitambar, M.3
Maldonado, S.4
Tuteja, A.5
Boukai, A.6
-
6
-
-
76749167624
-
Stretchable, porous, and conductive energy textiles
-
Hu L., Pasta M., Mantia F.L., Cui L., Jeong S., Deshazer H.D., Choi J.W., Han S.M., Cui Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10:708-714.
-
(2010)
Nano Lett.
, vol.10
, pp. 708-714
-
-
Hu, L.1
Pasta, M.2
Mantia, F.L.3
Cui, L.4
Jeong, S.5
Deshazer, H.D.6
Choi, J.W.7
Han, S.M.8
Cui, Y.9
-
7
-
-
79953661152
-
Flexible energy storage devices based on graphene paper
-
Gwon H., Kim H.-S., Lee K.U., Seo D.-H., Park Y.C., Lee Y.-S., Ahn B.T., Kang K. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4:1277-1283.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1277-1283
-
-
Gwon, H.1
Kim, H.-S.2
Lee, K.U.3
Seo, D.-H.4
Park, Y.C.5
Lee, Y.-S.6
Ahn, B.T.7
Kang, K.8
-
8
-
-
77950214388
-
Materials and mechanics for stretchable electronics
-
Rogers J.A., Someya T., Huang Y. Materials and mechanics for stretchable electronics. Science 2010, 327:1603-1607.
-
(2010)
Science
, vol.327
, pp. 1603-1607
-
-
Rogers, J.A.1
Someya, T.2
Huang, Y.3
-
9
-
-
84864232759
-
Flexible and stretchable electronics for biointegrated devices
-
Kim D.-H., Ghaffari R., Lu N., Rogers J.A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 2012, 14:113-128.
-
(2012)
Annu. Rev. Biomed. Eng.
, vol.14
, pp. 113-128
-
-
Kim, D.-H.1
Ghaffari, R.2
Lu, N.3
Rogers, J.A.4
-
10
-
-
77950291425
-
Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes
-
Feng C., Liu K., Wu J.-S., Liu L., Cheng J.-S., Zhang Y., Sun Y., Li Q., Fan S., Jiang K. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20:885-891.
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 885-891
-
-
Feng, C.1
Liu, K.2
Wu, J.-S.3
Liu, L.4
Cheng, J.-S.5
Zhang, Y.6
Sun, Y.7
Li, Q.8
Fan, S.9
Jiang, K.10
-
11
-
-
77957590958
-
High-density stretchable electronics: toward an integrated multilayer composite
-
Guo L., DeWeerth S.P. High-density stretchable electronics: toward an integrated multilayer composite. Adv. Mater. 2010, 22:4030-4033.
-
(2010)
Adv. Mater.
, vol.22
, pp. 4030-4033
-
-
Guo, L.1
DeWeerth, S.P.2
-
12
-
-
84893071961
-
Recent advances in flexible and stretchable electronic devices via electrospinning
-
Sun B., Long Y.-Z., Chen Z.-J., Liu S.-L., Zhang H.-D., Zhang J.-C., Han W.-P. Recent advances in flexible and stretchable electronic devices via electrospinning. J. Mater. Chem. C 2014, 2:1209-1219.
-
(2014)
J. Mater. Chem. C
, vol.2
, pp. 1209-1219
-
-
Sun, B.1
Long, Y.-Z.2
Chen, Z.-J.3
Liu, S.-L.4
Zhang, H.-D.5
Zhang, J.-C.6
Han, W.-P.7
-
13
-
-
84943194466
-
Fractal design concepts for stretchable electronics
-
Fan J.A., Yeo W.-H., Su Y., Hattori Y., Lee W., Jung S.-Y., Zhang Y., Liu Z., Cheng H., Falgout L., Bajema M., Coleman T., Gregoire D., Larsen R.J., Huang Y., Rogers J.A. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5:3266.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3266
-
-
Fan, J.A.1
Yeo, W.-H.2
Su, Y.3
Hattori, Y.4
Lee, W.5
Jung, S.-Y.6
Zhang, Y.7
Liu, Z.8
Cheng, H.9
Falgout, L.10
Bajema, M.11
Coleman, T.12
Gregoire, D.13
Larsen, R.J.14
Huang, Y.15
Rogers, J.A.16
-
14
-
-
34547752436
-
All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles
-
Ko S.H., Pan H., Grigoropoulos C.P., Luscombe C.K., Frechet J.M.J., Poulikakos D. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 2007, 18:345202.
-
(2007)
Nanotechnology
, vol.18
, pp. 345202
-
-
Ko, S.H.1
Pan, H.2
Grigoropoulos, C.P.3
Luscombe, C.K.4
Frechet, J.M.J.5
Poulikakos, D.6
-
15
-
-
84892634657
-
Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity
-
Shen W.F., Zhang X.P., Huang Q.J., Xu Q.S., Song W.J. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 2014, 6:1622-1628.
-
(2014)
Nanoscale
, vol.6
, pp. 1622-1628
-
-
Shen, W.F.1
Zhang, X.P.2
Huang, Q.J.3
Xu, Q.S.4
Song, W.J.5
-
16
-
-
84888022988
-
Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors
-
Su Y., Du J., Sun D., Liu C., Cheng H. Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Res. 2013, 6:842-852.
-
(2013)
Nano Res.
, vol.6
, pp. 842-852
-
-
Su, Y.1
Du, J.2
Sun, D.3
Liu, C.4
Cheng, H.5
-
17
-
-
0034773430
-
Inkjet printing for materials and devices
-
Calvert P. Inkjet printing for materials and devices. Chem. Mater. 2001, 13:3299-3305.
-
(2001)
Chem. Mater.
, vol.13
, pp. 3299-3305
-
-
Calvert, P.1
-
18
-
-
0034672078
-
High-resolution inkjet printing of all-polymer transistor circuits
-
Sirringhaus H., Kawase T., Friend R.H., Shimoda T., Inbasekaran M., Wu W., Woo E.P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290:2123-2126.
-
(2000)
Science
, vol.290
, pp. 2123-2126
-
-
Sirringhaus, H.1
Kawase, T.2
Friend, R.H.3
Shimoda, T.4
Inbasekaran, M.5
Wu, W.6
Woo, E.P.7
-
19
-
-
1542285058
-
Inkjet printing of polymers: state of the art and future developments
-
de Gans B.J., Duineveld P.C., Schubert U.S. Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 2004, 16:203-213.
-
(2004)
Adv. Mater.
, vol.16
, pp. 203-213
-
-
de Gans, B.J.1
Duineveld, P.C.2
Schubert, U.S.3
-
21
-
-
84860385148
-
Inkjet-printed graphene electronics
-
Torrisi F., Hasan T., Wu W., Sun Z., Lombardo A., Kulmala T.S., Hsieh G.-W., Jung S., Bonaccorso F., Paul P.J., Chu D., Ferrari A.C. Inkjet-printed graphene electronics. ACS Nano 2012, 6:2992-3006.
-
(2012)
ACS Nano
, vol.6
, pp. 2992-3006
-
-
Torrisi, F.1
Hasan, T.2
Wu, W.3
Sun, Z.4
Lombardo, A.5
Kulmala, T.S.6
Hsieh, G.-W.7
Jung, S.8
Bonaccorso, F.9
Paul, P.J.10
Chu, D.11
Ferrari, A.C.12
-
22
-
-
84892942493
-
A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries
-
Zhou G., Pei S., Li L., Wang D.-W., Wang S., Huang K., Yin L.-C., Li F., Cheng H.-M. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 2014, 26:625-631.
-
(2014)
Adv. Mater.
, vol.26
, pp. 625-631
-
-
Zhou, G.1
Pei, S.2
Li, L.3
Wang, D.-W.4
Wang, S.5
Huang, K.6
Yin, L.-C.7
Li, F.8
Cheng, H.-M.9
-
23
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45:1558-1565.
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
Wu, Y.7
Nguyen, S.T.8
Ruoff, R.S.9
-
24
-
-
77949344390
-
All-organic vapor sensor using inkjet-printed reduced graphene oxide
-
Dua V., Surwade S.P., Ammu S., Agnihotra S.R., Jain S., Roberts K.E., Park S., Ruoff R.S., Manohar S.K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 2010, 49:2154-2157.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 2154-2157
-
-
Dua, V.1
Surwade, S.P.2
Ammu, S.3
Agnihotra, S.R.4
Jain, S.5
Roberts, K.E.6
Park, S.7
Ruoff, R.S.8
Manohar, S.K.9
-
25
-
-
84880627964
-
Graphene nanosheets as ink particles for inkjet printing on flexible board
-
Lee C.-L., Chen C.-H., Chen C.-W. Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem. Eng. J. 2013, 230:296-302.
-
(2013)
Chem. Eng. J.
, vol.230
, pp. 296-302
-
-
Lee, C.-L.1
Chen, C.-H.2
Chen, C.-W.3
-
26
-
-
79959613164
-
Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors
-
Huang L., Huang Y., Liang J., Wan X., Chen Y. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4:675-684.
-
(2011)
Nano Res.
, vol.4
, pp. 675-684
-
-
Huang, L.1
Huang, Y.2
Liang, J.3
Wan, X.4
Chen, Y.5
-
27
-
-
66149133280
-
One nanometer thin carbon nanosheets with tunable conductivity and stiffness
-
Turchanin A., Beyer A., Nottbohm C.T., Zhang X., Stosch R., Sologubenko A., Mayer J., Hinze P., Weimann T., Gölzhäuser A. One nanometer thin carbon nanosheets with tunable conductivity and stiffness. Adv. Mater. 2009, 21:1233-1237.
-
(2009)
Adv. Mater.
, vol.21
, pp. 1233-1237
-
-
Turchanin, A.1
Beyer, A.2
Nottbohm, C.T.3
Zhang, X.4
Stosch, R.5
Sologubenko, A.6
Mayer, J.7
Hinze, P.8
Weimann, T.9
Gölzhäuser, A.10
-
28
-
-
77950240993
-
Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials
-
Compton O.C., Nguyen S.T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010, 6:711-723.
-
(2010)
Small
, vol.6
, pp. 711-723
-
-
Compton, O.C.1
Nguyen, S.T.2
-
29
-
-
33747048741
-
Direct ink-jet printing and low temperature conversion of conductive silver patterns
-
Smith P.J., Shin D.Y., Stringer J.E., Derby B., Reis N. Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 2006, 41:4153-4158.
-
(2006)
J. Mater. Sci.
, vol.41
, pp. 4153-4158
-
-
Smith, P.J.1
Shin, D.Y.2
Stringer, J.E.3
Derby, B.4
Reis, N.5
-
30
-
-
25444459649
-
Inkjet printing of nanosized silver colloids
-
Lee H.H., Chou K.S., Huang K.C. Inkjet printing of nanosized silver colloids. Nanotechnology 2005, 16:2436-2441.
-
(2005)
Nanotechnology
, vol.16
, pp. 2436-2441
-
-
Lee, H.H.1
Chou, K.S.2
Huang, K.C.3
-
31
-
-
79955471651
-
Silver nanoplates as inkjet ink particles for metallization at a low baking temperature of 100°C
-
Lee C.-L., Chang K.-C., Syu C.-M. Silver nanoplates as inkjet ink particles for metallization at a low baking temperature of 100°C. Colloids Surf., A 2011, 381:85-91.
-
(2011)
Colloids Surf., A
, vol.381
, pp. 85-91
-
-
Lee, C.-L.1
Chang, K.-C.2
Syu, C.-M.3
-
32
-
-
78649319282
-
Synthesis and characterization of silver-copper colloidal ink and its performance against electrical migration
-
Li Y.-S., Lu Y.-C., Chou K.-S., Liu F.-J. Synthesis and characterization of silver-copper colloidal ink and its performance against electrical migration. Mater. Res. Bull. 2010, 45:1837-1843.
-
(2010)
Mater. Res. Bull.
, vol.45
, pp. 1837-1843
-
-
Li, Y.-S.1
Lu, Y.-C.2
Chou, K.-S.3
Liu, F.-J.4
-
33
-
-
84876591432
-
Inkjet printing of high conductivity, flexible graphene patterns
-
Secor E.B., Prabhumirashi P.L., Puntambekar K., Geier M.L., Hersam M.C. Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 2013, 4:1347-1351.
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 1347-1351
-
-
Secor, E.B.1
Prabhumirashi, P.L.2
Puntambekar, K.3
Geier, M.L.4
Hersam, M.C.5
-
34
-
-
65249179425
-
Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation
-
Wu Z.-S., Ren W., Gao L., Zhao J., Chen Z., Liu B., Tang D., Yu B., Jiang C., Cheng H.-M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3:411-417.
-
(2009)
ACS Nano
, vol.3
, pp. 411-417
-
-
Wu, Z.-S.1
Ren, W.2
Gao, L.3
Zhao, J.4
Chen, Z.5
Liu, B.6
Tang, D.7
Yu, B.8
Jiang, C.9
Cheng, H.-M.10
-
35
-
-
83855165115
-
Controlled synthesis of MnSn(OH)6/graphene nanocomposites and their electrochemical properties as capacitive materials
-
Wang G., Sun X., Lu F., Yu Q., Liu C., Lian J. Controlled synthesis of MnSn(OH)6/graphene nanocomposites and their electrochemical properties as capacitive materials. J. Solid State Chem. 2012, 185:172-179.
-
(2012)
J. Solid State Chem.
, vol.185
, pp. 172-179
-
-
Wang, G.1
Sun, X.2
Lu, F.3
Yu, Q.4
Liu, C.5
Lian, J.6
-
36
-
-
38749134828
-
Raman spectra of graphite oxide and functionalized graphene sheets
-
Kudin K.N., Ozbas B., Schniepp H.C., Prud'homme R.K., Aksay I.A., Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2007, 8:36-41.
-
(2007)
Nano Lett.
, vol.8
, pp. 36-41
-
-
Kudin, K.N.1
Ozbas, B.2
Schniepp, H.C.3
Prud'homme, R.K.4
Aksay, I.A.5
Car, R.6
-
37
-
-
33750459007
-
Raman spectrum of graphene and graphene layers
-
Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., Geim A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97:187401.
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 187401
-
-
Ferrari, A.C.1
Meyer, J.C.2
Scardaci, V.3
Casiraghi, C.4
Lazzeri, M.5
Mauri, F.6
Piscanec, S.7
Jiang, D.8
Novoselov, K.S.9
Roth, S.10
Geim, A.K.11
-
38
-
-
0034686050
-
Coalescence of single-walled carbon nanotubes
-
Terrones M., Terrones H., Banhart F., Charlier J.-C., Ajayan P.M. Coalescence of single-walled carbon nanotubes. Science 2000, 288:1226-1229.
-
(2000)
Science
, vol.288
, pp. 1226-1229
-
-
Terrones, M.1
Terrones, H.2
Banhart, F.3
Charlier, J.-C.4
Ajayan, P.M.5
-
39
-
-
77249117787
-
Dynamic molecular structure of plant biomass-derived black carbon (Biochar)
-
Keiluweit M., Nico P.S., Johnson M.G., Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ. Sci. Technol. 2010, 44:1247-1253.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 1247-1253
-
-
Keiluweit, M.1
Nico, P.S.2
Johnson, M.G.3
Kleber, M.4
-
40
-
-
0028501401
-
Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study
-
Pastorova I., Botto R.E., Arisz P.W., Boon J.J. Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr. Res. 1994, 262:27-47.
-
(1994)
Carbohydr. Res.
, vol.262
, pp. 27-47
-
-
Pastorova, I.1
Botto, R.E.2
Arisz, P.W.3
Boon, J.J.4
-
41
-
-
57049174440
-
Exfoliated graphene separated by platinum nanoparticles
-
Si Y., Samulski E.T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20:6792-6797.
-
(2008)
Chem. Mater.
, vol.20
, pp. 6792-6797
-
-
Si, Y.1
Samulski, E.T.2
-
42
-
-
53549119409
-
Facile synthesis and characterization of graphene nanosheets
-
Wang G., Yang J., Park J., Gou X., Wang B., Liu H., Yao J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112:8192-8195.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 8192-8195
-
-
Wang, G.1
Yang, J.2
Park, J.3
Gou, X.4
Wang, B.5
Liu, H.6
Yao, J.7
-
43
-
-
77049107803
-
Inkjet printing-process and its applications
-
Singh M., Haverinen H.M., Dhagat P., Jabbour G.E. Inkjet printing-process and its applications. Adv. Mater. 2010, 22:673-685.
-
(2010)
Adv. Mater.
, vol.22
, pp. 673-685
-
-
Singh, M.1
Haverinen, H.M.2
Dhagat, P.3
Jabbour, G.E.4
-
44
-
-
33646252041
-
Marangoni effect reverses coffee-ring depositions
-
Hu H., Larson R.G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 2006, 110:7090-7094.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 7090-7094
-
-
Hu, H.1
Larson, R.G.2
-
45
-
-
84892179965
-
Ag-graphene hybrid conductive ink for writing electronics
-
Xu L.Y., Yang G.Y., Jing H.Y., Wei J., Han Y.D. Ag-graphene hybrid conductive ink for writing electronics. Nanotechnology 2014, 25:055201.
-
(2014)
Nanotechnology
, vol.25
, pp. 055201
-
-
Xu, L.Y.1
Yang, G.Y.2
Jing, H.Y.3
Wei, J.4
Han, Y.D.5
|