메뉴 건너뛰기




Volumn 9, Issue 9, 2014, Pages

Annotated chemical patent corpus: A gold standard for text mining

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL COMPOUND; G PROTEIN COUPLED RECEPTOR; HYDROLASE; ION CHANNEL; OXIDOREDUCTASE; PHOSPHATASE; PHOSPHOTRANSFERASE; PROTEINASE; TRANSFERASE;

EID: 84907493884     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0107477     Document Type: Article
Times cited : (58)

References (36)
  • 1
    • 82255175505 scopus 로고    scopus 로고
    • Making every SAR point count: The development of Chemistry Connect for the largescale integration of structure and bioactivity data
    • Muresan S, Petrov P, Southan C, Kjellberg MJ, Kogej T, et al. (2011) Making every SAR point count: the development of Chemistry Connect for the largescale integration of structure and bioactivity data. Drug Discov Today 16: 1019-1030.
    • (2011) Drug Discov Today , vol.16 , pp. 1019-1030
    • Muresan, S.1    Petrov, P.2    Southan, C.3    Kjellberg, M.J.4    Kogej, T.5
  • 2
    • 79959444149 scopus 로고    scopus 로고
    • Analysis of in vitro bioactivity data extracted from drug discovery literature and patents: Ranking 1654 human protein targets by assayed compounds and molecular scaffolds
    • Southan C, Boppana K, Jagarlapudi SA, Muresan S (2011) Analysis of in vitro bioactivity data extracted from drug discovery literature and patents: Ranking 1654 human protein targets by assayed compounds and molecular scaffolds. J Cheminform 3: 14.
    • (2011) J Cheminform , vol.3 , pp. 14
    • Southan, C.1    Boppana, K.2    Jagarlapudi, S.A.3    Muresan, S.4
  • 3
    • 84862861641 scopus 로고    scopus 로고
    • Exploiting structural Iinformation in patent specifications for key compound prediction
    • Tyrchan C, Boström J, Giordanetto F, Winter J, Muresan S (2012) Exploiting Structural Information in Patent Specifications for Key Compound Prediction. J Chem Inf Model 52: 1480-1489.
    • (2012) J Chem Inf Model , vol.52 , pp. 1480-1489
    • Tyrchan, C.1    Boström, J.2    Giordanetto, F.3    Winter, J.4    Muresan, S.5
  • 4
    • 34547852239 scopus 로고    scopus 로고
    • Identification of new drug classification terms in textual resources
    • Kolarik C, Hofmann-Apitius M, Zimmermann M, Fluck J (2007) Identification of new drug classification terms in textual resources. Bioinformatics 23: i264-272.
    • (2007) Bioinformatics , vol.23 , pp. i264-272
    • Kolarik, C.1    Hofmann-Apitius, M.2    Zimmermann, M.3    Fluck, J.4
  • 6
    • 23844461922 scopus 로고    scopus 로고
    • Information extraction in the life sciences: Perspectives for medicinal chemistry, pharmacology and toxicology
    • Zimmermann M, Fluck J, Thi LT, Kolarik C, Kumpf K, et al. (2005) Information extraction in the life sciences: perspectives for medicinal chemistry, pharmacology and toxicology. Curr Top Med Chem 5: 785-796.
    • (2005) Curr Top Med Chem , vol.5 , pp. 785-796
    • Zimmermann, M.1    Fluck, J.2    Thi, L.T.3    Kolarik, C.4    Kumpf, K.5
  • 7
    • 84907514418 scopus 로고    scopus 로고
    • European Patent Office. Accessed, 2014 Jan 1
    • European Patent Office. Available: http://www.epo.org/. Accessed 2014 Jan 1.
  • 8
    • 84907514417 scopus 로고    scopus 로고
    • United States Patent and Trademark Office. Accessed 2014 Jan 1
    • United States Patent and Trademark Office. Available: http://www.uspto.gov/. Accessed 2014 Jan 1.
  • 13
    • 79960604459 scopus 로고    scopus 로고
    • Text mining for drugs and chemical compounds: Methods, tools and applications
    • Vazquez M, Krallinger M, Leitner F, Valencia A (2011) Text mining for drugs and chemical compounds: methods, tools and applications. Mol Inform 30: 506-519.
    • (2011) Mol Inform , vol.30 , pp. 506-519
    • Vazquez, M.1    Krallinger, M.2    Leitner, F.3    Valencia, A.4
  • 15
    • 4944229711 scopus 로고    scopus 로고
    • GENIA corpus-semantically annotated corpus for bio-textmining
    • Kim JD, Ohta T, Tateisi Y, Tsujii J (2003) GENIA corpus-semantically annotated corpus for bio-textmining. Bioinformatics 19 Suppl 1: i180-182.
    • (2003) Bioinformatics , vol.19 , pp. i180-182
    • Kim, J.D.1    Ohta, T.2    Tateisi, Y.3    Tsujii, J.4
  • 20
    • 38549127678 scopus 로고    scopus 로고
    • ChEBI: A database and ontology for chemical entities of biological interest
    • Degtyarenko K, De Matos P, Ennis M, Hastings J, Zbinden M, et al. (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36: D344-D350.
    • (2008) Nucleic Acids Res , vol.36 , pp. D344-D350
    • Degtyarenko, K.1    De Matos, P.2    Ennis, M.3    Hastings, J.4    Zbinden, M.5
  • 23
    • 84907514415 scopus 로고    scopus 로고
    • Accessed, 2014 Jan 1
    • GVK BIO Target Class Based Compound Database. Available: http://www.gvkbio.com/products-services/informatics-analytics/products/standalonedatabases/. Accessed 2014 Jan 1.
    • GVK BIO Target Class Based Compound Database
  • 24
    • 84858040414 scopus 로고    scopus 로고
    • Improved chemical text mining of patents with infinite dictionaries and automatic spelling correction
    • Sayle R, Xie PH, Muresan S (2012) Improved chemical text mining of patents with infinite dictionaries and automatic spelling correction. J Chem Inf Model 52: 51-62.
    • (2012) J Chem Inf Model , vol.52 , pp. 51-62
    • Sayle, R.1    Xie, P.H.2    Muresan, S.3
  • 25
    • 84872175954 scopus 로고    scopus 로고
    • Consistency of systematic chemical identifiers within and between small-molecule databases
    • Akhondi SA, Kors JA, Muresan S (2012) Consistency of systematic chemical identifiers within and between small-molecule databases. J Cheminf 4: 35.
    • (2012) J Cheminf , vol.4 , pp. 35
    • Akhondi, S.A.1    Kors, J.A.2    Muresan, S.3
  • 26
    • 84907514414 scopus 로고    scopus 로고
    • About IUPAC. Accessed, 2014 Jan 1
    • About IUPAC. Available: http://www.iupac.org/home/about.html/. Accessed 2014 Jan 1.
  • 27
    • 0023965741 scopus 로고
    • SMILES, a chemical language and information system. Introduction to methodology and encoding rules
    • Weininger D (1988) SMILES, a chemical language and information system. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28: 31-36.
    • (1988) J Chem Inf Comput Sci , vol.28 , pp. 31-36
    • Weininger, D.1
  • 29
    • 84907514413 scopus 로고    scopus 로고
    • Accessed, 2014 Jan 1
    • About the InChI Standard. Available: http://www.inchi-trust.org/about-theinchi-standard/. Accessed 2014 Jan 1.
    • About the InChI Standard
  • 30
    • 84907514412 scopus 로고
    • CAS registry system
    • Undefined
    • Undefined (1978) CAS Registry System. J Chem Inf Model 18: 58-58.
    • (1978) J Chem Inf Model , vol.18 , pp. 58-58
  • 34
    • 84901056210 scopus 로고    scopus 로고
    • LeadMine: A grammar and dictionary driven approach to chemical entity recognition
    • Lowe DM, Sayle RA (2013) LeadMine: A grammar and dictionary driven approach to chemical entity recognition. BioCreative Challenge Evaluation Workshop. vol. 2 pp. 35.
    • (2013) BioCreative Challenge Evaluation Workshop , vol.2 , pp. 35
    • Lowe, D.M.1    Sayle, R.A.2
  • 36
    • 85037071664 scopus 로고    scopus 로고
    • Centroids: Gold standards with distributional variation
    • Lewin I, Kafkas S, Rebholz-Schuhmann D (2012) Centroids: Gold standards with distributional variation. LREC. pp. 3894-3900.
    • (2012) LREC , pp. 3894-3900
    • Lewin, I.1    Kafkas, S.2    Rebholz-Schuhmann, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.