메뉴 건너뛰기




Volumn 260, Issue , 2015, Pages 716-729

Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers

Author keywords

Adsorption; Composite; Iron(0); Kinetics; Reductive degradation

Indexed keywords

COMPOSITE MATERIALS; ENZYME KINETICS;

EID: 84907487472     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2014.09.014     Document Type: Article
Times cited : (82)

References (50)
  • 1
    • 33746062059 scopus 로고    scopus 로고
    • Nanotechnologies for environmental cleanup
    • Tratnyek P.G., Johnson R.L. Nanotechnologies for environmental cleanup. Nano Today 2006, 1:44-48.
    • (2006) Nano Today , vol.1 , pp. 44-48
    • Tratnyek, P.G.1    Johnson, R.L.2
  • 2
    • 49849093393 scopus 로고    scopus 로고
    • Environmental applications of carbon-based nanomaterials
    • Mauter M.S., Elimelech M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42:5843-5859.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 5843-5859
    • Mauter, M.S.1    Elimelech, M.2
  • 3
    • 55349140388 scopus 로고    scopus 로고
    • Functional nanofibers for environmental applications
    • Yoon K., Hsiao B.S., Chu B. Functional nanofibers for environmental applications. J. Mater. Chem. 2008, 18:5326-5334.
    • (2008) J. Mater. Chem. , vol.18 , pp. 5326-5334
    • Yoon, K.1    Hsiao, B.S.2    Chu, B.3
  • 4
    • 84858279484 scopus 로고    scopus 로고
    • Nanoscale zero-valent iron: future prospects for an emerging water treatment technology
    • Crane R.A., Scott T.B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 2012, 211-212:112-125.
    • (2012) J. Hazard. Mater. , pp. 112-125
    • Crane, R.A.1    Scott, T.B.2
  • 5
    • 84879158907 scopus 로고    scopus 로고
    • Applications of nanotechnology in water and wastewater treatment
    • Qu X., Alvarez P.J.J., Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47:3931-3946.
    • (2013) Water Res. , vol.47 , pp. 3931-3946
    • Qu, X.1    Alvarez, P.J.J.2    Li, Q.3
  • 6
    • 0031193606 scopus 로고    scopus 로고
    • Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs
    • Wang C.B., Zhang W.X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31:2154-2156.
    • (1997) Environ. Sci. Technol. , vol.31 , pp. 2154-2156
    • Wang, C.B.1    Zhang, W.X.2
  • 7
    • 0034659922 scopus 로고    scopus 로고
    • Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zero-valent iron
    • Ponder S.M., Darab J.G., Mallouk T.E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zero-valent iron. Environ. Sci. Technol. 2000, 34:2564-2569.
    • (2000) Environ. Sci. Technol. , vol.34 , pp. 2564-2569
    • Ponder, S.M.1    Darab, J.G.2    Mallouk, T.E.3
  • 8
    • 33645219301 scopus 로고    scopus 로고
    • Arsenic(V) removal from groundwater using nanoscale zerovalent iron as a colloidal reactive barrier material
    • Kanel S.R., Greneche J.M., Choi H. Arsenic(V) removal from groundwater using nanoscale zerovalent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 2006, 40:2045-2050.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 2045-2050
    • Kanel, S.R.1    Greneche, J.M.2    Choi, H.3
  • 9
    • 64549110688 scopus 로고    scopus 로고
    • 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron
    • Zhang X., Lin Y.M., Chen Z.L. 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron. J. Hazard. Mater. 2009, 165:923-927.
    • (2009) J. Hazard. Mater. , vol.165 , pp. 923-927
    • Zhang, X.1    Lin, Y.M.2    Chen, Z.L.3
  • 10
    • 14644429774 scopus 로고    scopus 로고
    • Chemical reduction of nitrate by nanosized iron: kinetics and pathways
    • Yang G.C.C., Lee H.L. Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res. 2005, 39:884-894.
    • (2005) Water Res. , vol.39 , pp. 884-894
    • Yang, G.C.C.1    Lee, H.L.2
  • 11
    • 67349100130 scopus 로고    scopus 로고
    • Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles
    • Fan J., Guo Y., Wang J., Fan M. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J. Hazard. Mater. 2009, 166:904-910.
    • (2009) J. Hazard. Mater. , vol.166 , pp. 904-910
    • Fan, J.1    Guo, Y.2    Wang, J.3    Fan, M.4
  • 13
    • 33947106858 scopus 로고    scopus 로고
    • Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects
    • Li X., Elliott D.W., Zhang W.X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 2006, 31:111-122.
    • (2006) Crit. Rev. Solid State Mater. Sci. , vol.31 , pp. 111-122
    • Li, X.1    Elliott, D.W.2    Zhang, W.X.3
  • 15
    • 33846006930 scopus 로고    scopus 로고
    • Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersion
    • Phenrat T., Saleh N., Sirk K., Tilton R.D., Lowry G.V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersion. Environ. Sci. Technol. 2007, 41:284-290.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 284-290
    • Phenrat, T.1    Saleh, N.2    Sirk, K.3    Tilton, R.D.4    Lowry, G.V.5
  • 16
    • 34548580379 scopus 로고    scopus 로고
    • Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizer
    • He F., Zhao D.Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizer. Environ. Sci. Technol. 2007, 41:6216-6221.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 6216-6221
    • He, F.1    Zhao, D.Y.2
  • 17
    • 0035883232 scopus 로고    scopus 로고
    • Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron
    • Alessi D.S., Li Z. Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environ. Sci. Technol. 2001, 35:3713-3717.
    • (2001) Environ. Sci. Technol. , vol.35 , pp. 3713-3717
    • Alessi, D.S.1    Li, Z.2
  • 18
    • 18344362135 scopus 로고    scopus 로고
    • Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water
    • He F., Zhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 2005, 39:3314-3320.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 3314-3320
    • He, F.1    Zhao, D.2
  • 20
    • 79952152631 scopus 로고    scopus 로고
    • Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons
    • Zhan J., Kolesnichenko I., Sunkara B., He J., McPherson G.L., Piringer G., John V.T. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environ. Sci. Technol. 2011, 45:1949-1954.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 1949-1954
    • Zhan, J.1    Kolesnichenko, I.2    Sunkara, B.3    He, J.4    McPherson, G.L.5    Piringer, G.6    John, V.T.7
  • 21
    • 71749087243 scopus 로고    scopus 로고
    • Removal of arsenic from water by supported nano zero-valent iron on activated carbon
    • Zhu H.J., Jia Y.F., Wu X., Wang H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 2009, 172:1591-1596.
    • (2009) J. Hazard. Mater. , vol.172 , pp. 1591-1596
    • Zhu, H.J.1    Jia, Y.F.2    Wu, X.3    Wang, H.4
  • 22
    • 77956648460 scopus 로고    scopus 로고
    • Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron
    • Zhang X., Lin X.Q., Lu Z.L. Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem. Eng. J. 2010, 163:243-248.
    • (2010) Chem. Eng. J. , vol.163 , pp. 243-248
    • Zhang, X.1    Lin, X.Q.2    Lu, Z.L.3
  • 23
    • 78650414868 scopus 로고    scopus 로고
    • Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron
    • Shi L.N., Zhang X., Chen Z.L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 2011, 45:886-892.
    • (2011) Water Res. , vol.45 , pp. 886-892
    • Shi, L.N.1    Zhang, X.2    Chen, Z.L.3
  • 24
    • 80555149338 scopus 로고    scopus 로고
    • Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes
    • Lv X., Xu J., Jiang G., Xu X. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 2011, 85:1204-1209.
    • (2011) Chemosphere , vol.85 , pp. 1204-1209
    • Lv, X.1    Xu, J.2    Jiang, G.3    Xu, X.4
  • 26
    • 69049115305 scopus 로고    scopus 로고
    • Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices
    • Guo S., Dong S., Wang E. Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. Small 2009, 5:1869-1876.
    • (2009) Small , vol.5 , pp. 1869-1876
    • Guo, S.1    Dong, S.2    Wang, E.3
  • 28
    • 80755139559 scopus 로고    scopus 로고
    • Pt nanoflower/polyaniline composite nanofibers based urea biosensor
    • Jia W., Su L., Lei Y. Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosens. Bioelectron. 2011, 30:158-164.
    • (2011) Biosens. Bioelectron. , vol.30 , pp. 158-164
    • Jia, W.1    Su, L.2    Lei, Y.3
  • 29
    • 79955405239 scopus 로고    scopus 로고
    • High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt
    • Wu G., More K.L., Johnston C.M., Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332:443-447.
    • (2011) Science , vol.332 , pp. 443-447
    • Wu, G.1    More, K.L.2    Johnston, C.M.3    Zelenay, P.4
  • 30
    • 84868320658 scopus 로고    scopus 로고
    • Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor
    • Hu Y., Zhao X., Huang Y., Li Q., Bjerrum N.J., Liu C., Xing W. Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor. J. Power Sour. 2013, 225:129-136.
    • (2013) J. Power Sour. , vol.225 , pp. 129-136
    • Hu, Y.1    Zhao, X.2    Huang, Y.3    Li, Q.4    Bjerrum, N.J.5    Liu, C.6    Xing, W.7
  • 32
    • 34249818481 scopus 로고    scopus 로고
    • The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron
    • Hou M., Li F., Liu X., Wang X., Wan H. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron. J. Hazard. Mater. 2007, 145:305-314.
    • (2007) J. Hazard. Mater. , vol.145 , pp. 305-314
    • Hou, M.1    Li, F.2    Liu, X.3    Wang, X.4    Wan, H.5
  • 33
    • 51049103624 scopus 로고    scopus 로고
    • Adsorption of sulphonated dyes by emeraldine salt polyaniline and its kinetic study
    • Mahanta D., Madras G., Radhakrishnan S., Patil S. Adsorption of sulphonated dyes by emeraldine salt polyaniline and its kinetic study. J. Phys. Chem. B 2008, 112:10153-10157.
    • (2008) J. Phys. Chem. B , vol.112 , pp. 10153-10157
    • Mahanta, D.1    Madras, G.2    Radhakrishnan, S.3    Patil, S.4
  • 34
    • 84878789139 scopus 로고    scopus 로고
    • Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibers
    • Bhaumik M., McCrindle R., Maity A. Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibers. Chem. Eng. J. 2013, 228:506-515.
    • (2013) Chem. Eng. J. , vol.228 , pp. 506-515
    • Bhaumik, M.1    McCrindle, R.2    Maity, A.3
  • 35
    • 27744458166 scopus 로고    scopus 로고
    • Nanofiber formation in the chemical polymerization of aniline: a mechanistic study
    • Huang J., Kaner R.B. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. 2004, 116:5941-5945.
    • (2004) Angew. Chem. , vol.116 , pp. 5941-5945
    • Huang, J.1    Kaner, R.B.2
  • 36
    • 84897498406 scopus 로고    scopus 로고
    • Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications
    • Bhaumik M., Choi H.J., McCrindle R.I., Maity A. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J. Colloid Interface Sci. 2014, 425:75-82.
    • (2014) J. Colloid Interface Sci. , vol.425 , pp. 75-82
    • Bhaumik, M.1    Choi, H.J.2    McCrindle, R.I.3    Maity, A.4
  • 37
    • 84864075463 scopus 로고    scopus 로고
    • Highly selective reduction of nitroarenes by iron(0) nanoparticles in water
    • Dev R., Mukherjee N., Ahammed S., Ranu B.C. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem. Commun. 2012, 48:7982-7984.
    • (2012) Chem. Commun. , vol.48 , pp. 7982-7984
    • Dev, R.1    Mukherjee, N.2    Ahammed, S.3    Ranu, B.C.4
  • 39
    • 82555193839 scopus 로고    scopus 로고
    • x/polyaniline nanorods as efficient catalysts for alkene epoxidation
    • x/polyaniline nanorods as efficient catalysts for alkene epoxidation. Chem. Commun. 2012, 48:260-262.
    • (2012) Chem. Commun. , vol.48 , pp. 260-262
    • Gao, Q.S.1    Wang, S.N.2    Tang, Y.3    Giordano, C.4
  • 40
    • 77955785922 scopus 로고    scopus 로고
    • Coaxial cable-like polyaniline@titania nanofibers: facile synthesis and low power electrorheological fluid application
    • Yin J., Xiang X., Xiang L., Zhao X. Coaxial cable-like polyaniline@titania nanofibers: facile synthesis and low power electrorheological fluid application. J. Mater. Chem. 2010, 20:7096-7099.
    • (2010) J. Mater. Chem. , vol.20 , pp. 7096-7099
    • Yin, J.1    Xiang, X.2    Xiang, L.3    Zhao, X.4
  • 41
    • 0032312112 scopus 로고    scopus 로고
    • Polyaniline: apolymer with many interesting intrinsic redox states
    • Kang E.T., Neoh K.G., Tan K.L. Polyaniline: apolymer with many interesting intrinsic redox states. Prog. Polym. Sci. 1998, 23:277-324.
    • (1998) Prog. Polym. Sci. , vol.23 , pp. 277-324
    • Kang, E.T.1    Neoh, K.G.2    Tan, K.L.3
  • 42
    • 14744287028 scopus 로고    scopus 로고
    • Removal of arsenic(III) from groundwater by nanoscale zero-valent iron
    • Kanel S.R., Manning B., Charlet L., Choi H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 2005, 39:1291-1298.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 1291-1298
    • Kanel, S.R.1    Manning, B.2    Charlet, L.3    Choi, H.4
  • 43
    • 84876489917 scopus 로고    scopus 로고
    • Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution
    • Chen Z.X., Wang T., Jin X., Chen Z., Megharaj M., Naidu R. Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. J. Colloid Interface Sci. 2013, 398:59-66.
    • (2013) J. Colloid Interface Sci. , vol.398 , pp. 59-66
    • Chen, Z.X.1    Wang, T.2    Jin, X.3    Chen, Z.4    Megharaj, M.5    Naidu, R.6
  • 44
    • 80052622370 scopus 로고    scopus 로고
    • Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron
    • Chen Z.X., Jin X.Y., Chen Z.L., Megharaj M. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J. Colloid Interface Sci. 2011, 363:601-607.
    • (2011) J. Colloid Interface Sci. , vol.363 , pp. 601-607
    • Chen, Z.X.1    Jin, X.Y.2    Chen, Z.L.3    Megharaj, M.4
  • 45
    • 54549096105 scopus 로고    scopus 로고
    • Kinetics of zero-valent iron reductive transformation of the anthraquinone dye reactive blue 4
    • Epolito W.J., Yang H., Bottomley L.A., Pavlostathis S.G. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye reactive blue 4. J. Hazard. Mater. 2008, 160:594-600.
    • (2008) J. Hazard. Mater. , vol.160 , pp. 594-600
    • Epolito, W.J.1    Yang, H.2    Bottomley, L.A.3    Pavlostathis, S.G.4
  • 46
    • 77951100334 scopus 로고    scopus 로고
    • Removal of reactive black 5 by zero-valent iron modified with various surfactants
    • Chatterjee S., Lim S.R., Woo S.H. Removal of reactive black 5 by zero-valent iron modified with various surfactants. Chem. Eng. J. 2010, 160:27-32.
    • (2010) Chem. Eng. J. , vol.160 , pp. 27-32
    • Chatterjee, S.1    Lim, S.R.2    Woo, S.H.3
  • 47
    • 84885938545 scopus 로고    scopus 로고
    • Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution
    • Wang T., Su J., Jin X., Chen Z., Meghraj M., Naidu R. Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution. J. Hazard. Mater. 2013, 262:819-825.
    • (2013) J. Hazard. Mater. , vol.262 , pp. 819-825
    • Wang, T.1    Su, J.2    Jin, X.3    Chen, Z.4    Meghraj, M.5    Naidu, R.6
  • 48
    • 38349071046 scopus 로고    scopus 로고
    • Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution
    • Bokare A.D., Chikate R.C., Rode C.V., Panikar K.M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl. Catal. B: Environ. 2008, 79:270-278.
    • (2008) Appl. Catal. B: Environ. , vol.79 , pp. 270-278
    • Bokare, A.D.1    Chikate, R.C.2    Rode, C.V.3    Panikar, K.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.