메뉴 건너뛰기




Volumn 113, Issue 8, 2014, Pages

Dilaton chiral perturbation theory: Determining the mass and decay constant of the technidilaton on the lattice

Author keywords

[No Author keywords available]

Indexed keywords

ATOMIC PHYSICS; PHYSICS;

EID: 84907332705     PISSN: 00319007     EISSN: 10797114     Source Type: Journal    
DOI: 10.1103/PhysRevLett.113.082002     Document Type: Article
Times cited : (131)

References (35)
  • 1
    • 85038109506 scopus 로고    scopus 로고
    • (ATLAS Collaboration), (); PYLBAJ 0370-2693 10.1016/j.physletb.2012.08. 020
    • G. Aad (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012); PYLBAJ 0370-2693 10.1016/j.physletb.2012.08.020
    • (2012) Phys. Lett. B , vol.716 , pp. 1
    • Aad, G.1
  • 2
    • 84865786005 scopus 로고    scopus 로고
    • (CMS Collaboration),. PYLBAJ 0370-2693 10.1016/j.physletb.2012.08.021
    • S. Chatrchyan (CMS Collaboration), Phys. Lett. B 716, 30 (2012). PYLBAJ 0370-2693 10.1016/j.physletb.2012.08.021
    • (2012) Phys. Lett. B , vol.716 , pp. 30
    • Chatrchyan, S.1
  • 3
  • 4
    • 0037597899 scopus 로고
    • PYLBAJ 0370-2693 10.1016/0370-2693(86)91516-9
    • M. Bando, K. Matumoto, and K. Yamawaki, Phys. Lett. B 178, 308 (1986). PYLBAJ 0370-2693 10.1016/0370-2693(86)91516-9
    • (1986) Phys. Lett. B , vol.178 , pp. 308
    • Bando, M.1    Matumoto, K.2    Yamawaki, K.3
  • 5
    • 84873567300 scopus 로고    scopus 로고
    • PYLBAJ 0370-2693 10.1016/j.physletb.2013.01.031
    • S. Matsuzaki and K. Yamawaki, Phys. Lett. B 719, 378 (2013); PYLBAJ 0370-2693 10.1016/j.physletb.2013.01.031
    • (2013) Phys. Lett. B , vol.719 , pp. 378
    • Matsuzaki, S.1    Yamawaki, K.2
  • 7
    • 84870626186 scopus 로고    scopus 로고
    • PRVDAQ 1550-7998 10.1103/PhysRevD.86.115004
    • S. Matsuzaki and K. Yamawaki, Phys. Rev. D 86, 115004 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.115004
    • (2012) Phys. Rev. D , vol.86 , pp. 115004
    • Matsuzaki, S.1    Yamawaki, K.2
  • 8
    • 84907325411 scopus 로고    scopus 로고
    • J. Kuti, Proc. Sci., LATTICE (2014) 004;
    • Proc. Sci. , vol.2014 , Issue.LATTICE , pp. 004
    • Kuti, J.1
  • 9
    • 84976335622 scopus 로고    scopus 로고
    • J. Giedt, Proc. Sci., LATTICE (2012) 006;
    • Proc. Sci. , vol.2012 , Issue.LATTICE , pp. 006
    • Giedt, J.1
  • 10
    • 84875380706 scopus 로고    scopus 로고
    • references therein.
    • E.T. Neil, Proc. Sci., LATTICE (2011) 009, and references therein.
    • Proc. Sci. , vol.2011 , Issue.LATTICE , pp. 009
    • Neil, T.E.1
  • 11
    • 84885758503 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.111.162001
    • Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki, and T. Yamazaki, Phys. Rev. Lett. 111, 162001 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.162001
    • (2013) Phys. Rev. Lett. , vol.111 , pp. 162001
    • Aoki, Y.1    Aoyama, T.2    Kurachi, M.3    Maskawa, T.4
  • 15
    • 0010719821 scopus 로고
    • APNYA6 0003-4916 10.1016/0003-4916(84)90242-2
    • J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984); APNYA6 0003-4916 10.1016/0003-4916(84)90242-2
    • (1984) Ann. Phys. (N.Y.) , vol.158 , pp. 142
    • Gasser, J.1    Leutwyler, H.2
  • 16
    • 26144470001 scopus 로고
    • NUPBBO 0550-3213 10.1016/0550-3213(85)90492-4
    • J. Gasser and H. Leutwyler Nucl. Phys. B250, 465 (1985). NUPBBO 0550-3213 10.1016/0550-3213(85)90492-4
    • (1985) Nucl. Phys. , vol.B250 , pp. 465
    • Gasser, J.1    Leutwyler, H.2
  • 18
    • 78651103604 scopus 로고    scopus 로고
    • PRVDAQ 1550-7998 10.1103/PhysRevD.82.055007
    • K. Haba, S. Matsuzaki, and K. Yamawaki, Phys. Rev. D 82, 055007 (2010); PRVDAQ 1550-7998 10.1103/PhysRevD.82.055007
    • (2010) Phys. Rev. D , vol.82 , pp. 055007
    • Haba, K.1    Matsuzaki, S.2    Yamawaki, K.3
  • 19
    • 79551646872 scopus 로고    scopus 로고
    • PRVDAQ 1550-7998 10.1103/PhysRevD.83.015008
    • M. Hashimoto and K. Yamawaki, Phys. Rev. D 83, 015008 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.83.015008
    • (2011) Phys. Rev. D , vol.83 , pp. 015008
    • Hashimoto, M.1    Yamawaki, K.2
  • 21
    • 84907365480 scopus 로고    scopus 로고
    • The subtracted (Equation presented) in Eq. (1) is defined as (Equation presented) [11], where the usual (perturbative) scale anomaly, (Equation presented) ((Equation presented)), is characterized by the intrinsic scale (Equation presented), a scale responsible for the asymptotically free (perturbative) running of the coupling in the ultraviolet region. Hence, (Equation presented) is nonzero only in the broken phase, (Equation presented), where (Equation presented), in sharp contrast to the usual QCD, where (Equation presented). For details see, e.g., the third reference in Ref. [11].
    • The subtracted (Equation presented) in Eq. (1) is defined as (Equation presented) [11], where the usual (perturbative) scale anomaly, (Equation presented) ((Equation presented)), is characterized by the intrinsic scale (Equation presented), a scale responsible for the asymptotically free (perturbative) running of the coupling in the ultraviolet region. Hence, (Equation presented) is nonzero only in the broken phase, (Equation presented), where (Equation presented), in sharp contrast to the usual QCD, where (Equation presented). For details see, e.g., the third reference in Ref. [11].
  • 22
    • 84907325410 scopus 로고    scopus 로고
    • The Lagrangian is constructed uniquely (up to total derivatives) by the requirement that the action (Equation presented) be invariant under the scale (and also chiral) transformation (Equation presented), (Equation presented). This implies that (Equation presented) namely, the scale dimension of (Equation presented) must be 4, (Equation presented). Equation (2) is a unique chirally invariant Lagrangian having scale dimension four and a correct kinetic term of (Equation presented). Note that the dimensionless field (Equation presented) transforms as an operator with the scale dimension one, with (Equation presented). Similarly, the Lagrangians, Eqs. (2)-(4) are unique in a way to have the scale dimension four and to satisfy the anomalous WT identities as well as the stable vacuum. See also Ref. [19].
    • The Lagrangian is constructed uniquely (up to total derivatives) by the requirement that the action (Equation presented) be invariant under the scale (and also chiral) transformation (Equation presented), (Equation presented). This implies that (Equation presented) namely, the scale dimension of (Equation presented) must be 4, (Equation presented). Equation (2) is a unique chirally invariant Lagrangian having scale dimension four and a correct kinetic term of (Equation presented). Note that the dimensionless field (Equation presented) transforms as an operator with the scale dimension one, with (Equation presented). Similarly, the Lagrangians, Eqs. (2)-(4) are unique in a way to have the scale dimension four and to satisfy the anomalous WT identities as well as the stable vacuum. See also Ref. [19].
  • 23
    • 0000399751 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.55.5051
    • V.A. Miransky and K. Yamawaki, Phys. Rev. D 55, 5051 (1997); PRVDAQ 0556-2821 10.1103/PhysRevD.55.5051
    • (1997) Phys. Rev. D , vol.55 , pp. 5051
    • Miransky, V.A.1    Yamawaki, K.2
  • 24
    • 84927752356 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.56.3768
    • V.A. Miransky and K. Yamawaki, Phys. Rev. D 56, 3768(E) (1997); PRVDAQ 0556-2821 10.1103/PhysRevD.56.3768
    • (1997) Phys. Rev. D , vol.56
    • Miransky, V.A.1    Yamawaki, K.2
  • 26
    • 84907305428 scopus 로고    scopus 로고
    • The scale-WT identity for the operator (Equation presented) reads (Equation presented), where (Equation presented), with (Equation presented), and (Equation presented) is the scale dimension of the operator (Equation presented). Note that the second term comes from the (Equation presented) pole contribution. Thus, we have (Equation presented).
    • The scale-WT identity for the operator (Equation presented) reads (Equation presented), where (Equation presented), with (Equation presented), and (Equation presented) is the scale dimension of the operator (Equation presented). Note that the second term comes from the (Equation presented) pole contribution. Thus, we have (Equation presented).
  • 27
    • 84865770259 scopus 로고    scopus 로고
    • PRVDAQ 1550-7998 10.1103/PhysRevD.86.035025
    • S. Matsuzaki and K. Yamawaki, Phys. Rev. D 86, 035025 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.035025
    • (2012) Phys. Rev. D , vol.86 , pp. 035025
    • Matsuzaki, S.1    Yamawaki, K.2
  • 29
    • 84907365479 scopus 로고    scopus 로고
    • The coefficient of the scale-invariant term (Equation presented) is uniquely determined as in Eq. (4) by the vacuum stability requirement to be proportional to the fermion mass (Equation presented), and hence does not exist in the chiral limit Lagrangian Eq. (2) with (Equation presented). See Ref. [18] for details. Thus, our Lagrangian, Eq. (5), as well as Eq. (2), is unique at order (Equation presented).
    • The coefficient of the scale-invariant term (Equation presented) is uniquely determined as in Eq. (4) by the vacuum stability requirement to be proportional to the fermion mass (Equation presented), and hence does not exist in the chiral limit Lagrangian Eq. (2) with (Equation presented). See Ref. [18] for details. Thus, our Lagrangian, Eq. (5), as well as Eq. (2), is unique at order (Equation presented).
  • 30
    • 0000498366 scopus 로고
    • A similar formula was also discussed in a completely different context, i.e., hadron physics, which we believe has no approximate scale symmetry and is irrelevant to our discussions. See, e.g., (); NUPBBO 0550-3213 10.1016/0550-3213(70)90422-0
    • A similar formula was also discussed in a completely different context, i.e., hadron physics, which we believe has no approximate scale symmetry and is irrelevant to our discussions. See, e.g., J. Ellis, Nucl. Phys. B22, 478 (1970); NUPBBO 0550-3213 10.1016/0550-3213(70)90422-0
    • (1970) Nucl. Phys. , vol.B22 , pp. 478
    • Ellis, J.1
  • 31
    • 84907325409 scopus 로고    scopus 로고
    • R.J. Crewther and L.C. Tunstall, arXiv:1203.1321
    • R.J. Crewther and L.C. Tunstall, arXiv:1203.1321.
  • 32
    • 84907305427 scopus 로고    scopus 로고
    • M. Kurachi, S. Matsuzaki, and K. Yamawaki, arXiv:1404.3048
    • M. Kurachi, S. Matsuzaki, and K. Yamawaki, arXiv:1404.3048.
  • 33
    • 33847365180 scopus 로고
    • PRPLCM 0370-1573 10.1016/0370-1573(88)90019-1
    • M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164, 217 (1988); PRPLCM 0370-1573 10.1016/0370-1573(88)90019-1
    • (1988) Phys. Rep. , vol.164 , pp. 217
    • Bando, M.1    Kugo, T.2    Yamawaki, K.3
  • 34
    • 0037780975 scopus 로고    scopus 로고
    • Hidden local symmetry at loop: A new perspective of composite gauge boson and chiral phase transition
    • DOI 10.1016/S0370-1573(03)00139-X, PII S037015730300139X
    • M. Harada and K. Yamawaki, Phys. Rep. 381, 1 (2003). PRPLCM 0370-1573 10.1016/S0370-1573(03)00139-X (Pubitemid 36688432)
    • (2003) Physics Reports , vol.381 , Issue.1-3 , pp. 1-233
    • Harada, M.1    Yamawaki, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.